On the framework of L_{p} summations for functions

Sudan Xing

sxing@ualberta.ca

Convexity and High-dimensional Probability
Georgia Institute of Technology
May 23-27, 2022

Department of Mathematical and Statistical Sciences
University of Alberta

L_{p}-Borell-Brascamp-Lieb inequality

L_{p} coefficients: $C_{p, \lambda, t}:=(1-t)^{\frac{1}{p}}(1-\lambda)^{\frac{1}{q}}, D_{p, \lambda, t}:=t^{\frac{1}{\rho}} \lambda^{\frac{1}{q}}$ for $t, \lambda \in[0,1]$ where $1 / p+1 / q=1$.
L_{p}-Borell-Brascamp-Lieb inequality (M. Roysdon and S. Xing, 2021)
Let $p \geq 1,-\infty<s<\infty, t \in(0,1)$ and $f, g, h: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$be a triple of bounded integrable functions satisfying the condition

$$
h\left(C_{p, \lambda, t} x+D_{p, \lambda, t} y\right) \geq\left[C_{p, \lambda, t} f(x)^{s}+D_{p, \lambda, t} g(y)^{s}\right]^{\frac{1}{s}}
$$

for every $x \in \operatorname{supp}(f), y \in \operatorname{supp}(g)$ and every $\lambda \in[0,1]$. Then

$$
\int h \geq \begin{cases}\left((1-t)\left(\int f\right)^{p \gamma}+t\left(\int g\right)^{p \gamma}\right)^{\frac{1}{p \gamma}}, & \text { if } s \geq-\frac{1}{n}, \\ \min \left\{\left[C_{p, \lambda, t}\right]^{\frac{1}{\gamma}} \int f,\left[D_{p, \lambda, t}\right]^{\frac{1}{\gamma}} \int g\right), & \text { if } s<-\frac{1}{n},\end{cases}
$$

for $0 \leq \lambda \leq 1$, and $\gamma=\frac{s}{1+n s}$.

- $p=1, s \geq-\frac{1}{n}$: the classical BBL inequality.
- $p=1, s<-\frac{1}{n}$: the case solved by S. Dancs and B. Uhrin, JMAA, 1980 .

$L_{p, s}$ supremal convolution

M. Roysdon and S. Xing (Trans. Amer. Math. Soc., 2021)

For $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}, s \in(-\infty, \infty)$ and $p \geq 1$, we define the $L_{p, s}$ supremal convolution of f and g as

$$
\left[(1-t) \cdot p, s, \oplus_{p, s} t \cdot{ }_{p, s} g\right](z)=\sup _{0 \leq \lambda \leq 1} \sup _{z=C_{p, \lambda, t} x+D_{p, \lambda, t y}}\left(C_{p, \lambda, t} f(x)^{s}+D_{p, \lambda, t} g(y)^{s}\right)^{1 / s}
$$

where $1 / p+1 / q=1$.
$\int(1-t) \cdot{ }_{p, s} f \oplus_{p, s} t \cdot{ }_{p, s} g \geq \begin{cases}\left((1-t)\left(\int f\right)^{p \gamma}+t\left(\int g\right)^{p \gamma}\right)^{\frac{1}{p \gamma}}, & \text { if } s \geq-\frac{1}{n}, \\ \min \left\{\left[C_{p, \lambda, t}\right]^{\frac{1}{\gamma}} \int f,\left[D_{p, \lambda, t}\right]^{\frac{1}{\gamma}} \int g\right), & \text { if } s<-\frac{1}{n} .\end{cases}$
$\diamond 0<p<1$: we define $L_{p, s}$ inf-supremal convolution of f and g replacing $\sup _{0 \leq \lambda \leq 1}$ by $\inf _{0 \leq \lambda \leq 1}$.
\& $p=1$: the classic supremal convolution operation for functions.
$\diamond K, L$ are convex bodies: $(1-t) \cdot{ }_{p, s} \chi_{K} \oplus_{p, s} t \cdot{ }_{p, s} \chi_{L}=\chi_{(1-t) \cdot{ }_{p} K+{ }_{p} t_{p} L}$ where $(1-t) \cdot{ }_{p} K+{ }_{p} t \cdot{ }_{p} L$ means the L_{p} Minkowski summation.

The $L_{p, s}$ Asplund summation for $p \geq 1$

\diamond Given $\alpha, \beta \geq 0$ and convex functions u, v on \mathbb{R}^{n}, the L_{p} addition of u, v

$$
\left[\left(\alpha \boxtimes_{p} u\right) \boxplus_{p}\left(\beta \boxtimes_{p} v\right)\right](x):=\left\{\left(\alpha\left(u^{*}(x)\right)^{p}+\beta\left(v^{*}(x)\right)^{p}\right)^{1 / p}\right\}^{*}
$$

where the Legendre transform for u is defined as

$$
u^{*}(x)=\sup _{y \in \mathbb{R}^{n}}[\langle x, y\rangle-u(y)]
$$

The $L_{p, s}$ Asplund summation for s-concave functions

For $p \geq 1, s \in(-\infty, \infty)$, given s-concave functions $f(x)=(1-s u(x))_{+}^{\frac{1}{s}}$ and $g(x)=(1-s v(x))_{+}^{\frac{1}{s}}$, we define the $L_{p, s}$ Asplund summation with weights $\alpha, \beta \geq 0$ as

$$
\left(\alpha \cdot_{p, s} f\right) \star_{p, s}\left(\beta \cdot_{p, s} g\right):=\left(1-s\left[\left(\alpha \boxtimes_{p} u\right) \boxplus_{p}\left(\beta \boxtimes_{p} v\right)\right]\right)_{+}^{\frac{1}{s}}
$$

$\diamond s=0$: Asplund summations for log-concave functions by N, Fang, S. Xing and D. Ye, CVPDE, 2020.

Quermassintegral for functions

\downarrow Projection function $\left(f_{H}\right)(z):=\sup _{y \in H^{\perp}} f(z+y)$.

Quermassintegral of functions

For a non-negative function f on \mathbb{R}^{n} and $j \in\{0, \cdots, n-1\}$, the j-th quermassintegral of f is defined as

$$
W_{j}(f):=c_{n, j} \int_{G_{n, n-j}} \int_{H} f_{H}(x) d x d \nu_{n, n-j}(H) .
$$

$\diamond W_{j}(f)=\int_{0}^{\infty} W_{j}\left(\left\{x \in \mathbb{R}^{n}: f(x) \geq t\right\}\right) d t$.
$\diamond f=\chi_{K}: W_{j}(f)=W_{j}(K)$, the quermassintegral for convex body K.
$\diamond \alpha \in\left[-1, \frac{1}{n-j}\right], \gamma \in[-\alpha, \infty), \alpha$-concave functions f, g, and $p \geq 1$: $W_{j}\left((1-t) \times_{p, \alpha} f \oplus_{p, \alpha} t \times_{p, \alpha} g\right) \geq\left[(1-t) W_{j}(f)^{\beta}+t W_{j}(g)^{\beta}\right]^{1 / \beta}, \beta=\frac{p \alpha \gamma}{\alpha+\gamma}$.

$L_{p, s}$ mixed quermassintegral

Variation formula of quermassintegral (M. Roysdon and S. Xing, 2021)
We define $L_{p, s}$ mixed quermassintegral for s-concave functions $f=(1-s u)_{+}^{1 / s}$, $g=(1-s v)_{+}^{1 / s}$ and $\varphi=u^{*}, \psi=v^{*}$ as

$$
\begin{aligned}
W_{p, j}^{s}(f, g) & :=\frac{1}{n-j} \lim _{\varepsilon \rightarrow 0} \frac{W_{j}\left(f \star_{p, s} \varepsilon \cdot_{p, s} g\right)-W_{j}(f)}{\varepsilon} \\
& =\frac{1}{n-j} \int_{\mathbb{R}^{n}} \frac{\left[1-s u_{H}(x)\right]_{+}^{\frac{1}{s}-1} \psi_{H}\left(\nabla u_{H}(x)\right)^{p}}{\|x\|^{j}} \varphi_{H}\left(\nabla u_{H}(x)\right)^{1-p} d x .
\end{aligned}
$$

$\downarrow s=0: W_{p, j}^{0}(f, g)=\frac{1}{n-j} \int_{\mathbb{R}^{n}} \frac{e^{-u_{H}(x)} \psi_{H}\left(\nabla u_{H}(x)\right)^{p} \varphi_{H}\left(\nabla u_{H}(x)\right)^{1-p}}{\|x\|^{j}} d x$.
$\uparrow j=0, s=0$:
(i) $0<p<1$: L. Rotem; $p \geq 1$: N. Fang, S. Xing and D. Ye.
(ii) $f(x)=\chi_{K}, g=\chi_{L}$ for convex bodies K, L :

$$
W_{p, 0}^{1}(f, g)=V_{p}(K, L)=\frac{1}{n} \int_{S^{n-1}} h_{L}^{p}(u) h_{K}^{1-p} d S(K, u) .
$$

Thank you very much!!!

Problems in Directional Discrepancy

at the Workshop in Convexity and Probability, GA Tech
Michelle Mastrianni

University of Minnesota

May 27, 2022

Discrepancy notation

- Point set $P \subseteq[0,1)^{d}:|P|=N$
- Class of subsets of $[0,1)^{d}: \mathcal{A}$

Definition (Local discrepancy)

$$
D(P, A)=|N \cdot \operatorname{vol}(A)-|P \cap A||
$$

Discrepancy notation

- Point set $P \subseteq[0,1)^{d}:|P|=N$
- Class of subsets of $[0,1)^{d}: \mathcal{A}$

Definition (Local discrepancy)

$$
D(P, A)=|N \cdot \operatorname{vol}(A)-|P \cap A||
$$

Definition $\left(L_{\infty}\right.$-discrepancy of P wrt $\left.\mathcal{A}\right)$

$$
D(P, \mathcal{A})=\sup _{A \in \mathcal{A}} D(P, A)
$$

Discrepancy notation

- Point set $P \subseteq[0,1)^{d}:|P|=N$
- Class of subsets of $[0,1)^{d}: \mathcal{A}$

Definition (Local discrepancy)

$$
D(P, A)=|N \cdot \operatorname{vol}(A)-|P \cap A||
$$

Definition $\left(L_{\infty}\right.$-discrepancy of P wrt $\left.\mathcal{A}\right)$

$$
D(P, \mathcal{A})=\sup _{A \in \mathcal{A}} D(P, A)
$$

Definition $\left(L_{\infty}\right.$-discrepancy wrt $\left.\mathcal{A}\right)$

$$
D(N, \mathcal{A})=\inf _{\substack{P \in[0,1)^{d} \\|P|=N}} D(P, \mathcal{A})
$$

Directional discrepancy in two dimensions

If $\Omega \subset\left[0, \frac{\pi}{2}\right)$ is a set of "allowed" directions, let
$\mathcal{R}_{\Omega}=\left\{R \cap[0,1]^{2}: \begin{array}{l}R \text { is a rectangle making angle } \theta \\ \text { with the } x \text {-axis, where } \theta \in \Omega\end{array}\right\}$.

Directional discrepancy in two dimensions

If $\Omega \subset\left[0, \frac{\pi}{2}\right)$ is a set of "allowed" directions, let

$$
\mathcal{R}_{\Omega}=\left\{R \cap[0,1]^{2}: \begin{array}{l}
R \text { is a rectangle making angle } \theta \\
\text { with the } x \text {-axis, where } \theta \in \Omega
\end{array}\right\} .
$$

Two extreme cases:

- When Ω is a singleton, say $\Omega=\{0\}$ (the very well-studied class of axis-parallel rectangles), we get logarithmic discrepancy:

$$
D\left(N, \mathcal{R}_{\{0\}}\right) \approx \log N \quad \text { (Roth, Schmidt, Halasz, van der Corput) }
$$

- And, for all rotations $\mathcal{R}_{\text {all }}=\mathcal{R}_{\left[0, \frac{\pi}{2}\right)}$ we have polynomial discrepancy:

$$
\begin{equation*}
N^{1 / 4} \lesssim D\left(N, \mathcal{R}_{\text {all }}\right) \lesssim N^{1 / 4} \sqrt{\log N} \tag{Beck}
\end{equation*}
$$

Question: What happens "in between" these extremes?

Lower bounds

All rotations: Let P_{N} be an N-point set and $S(q, r, v)$ a square with center q, sidelength r, and angle ν. If $\mu=N \lambda-\sum_{p_{i} \in P_{N}} \delta\left(p-p_{i}\right)$, we have

$$
\int_{\mathbb{R}^{2}} D\left(P_{N}, S(q, r, \nu)\right)^{2} d q=\int_{\mathbb{R}^{2}} \underbrace{\left|\widehat{\mathbf{1}_{r, \nu}}(\xi)\right|^{2}}_{\begin{array}{c}
\text { shape } \\
\text { component }
\end{array}} \cdot \underbrace{|\widehat{\mu}(\xi)|^{2}}_{\begin{array}{c}
\text { point } \\
\text { component }
\end{array}} d \xi .
$$

Lower bounds

All rotations: Let P_{N} be an N-point set and $S(q, r, v)$ a square with center q, sidelength r, and angle ν. If $\mu=N \lambda-\sum_{p_{i} \in P_{N}} \delta\left(p-p_{i}\right)$, we have

$$
\int_{\mathbb{R}^{2}} D\left(P_{N}, S(q, r, \nu)\right)^{2} d q=\int_{\mathbb{R}^{2}} \underbrace{\left.\widehat{\mathbf{1}_{r, \nu}}(\xi)\right|^{2}}_{\begin{array}{c}
\text { shape } \\
\text { component }
\end{array}} \cdot \underbrace{|\widehat{\mu}(\xi)|^{2}}_{\begin{array}{c}
\text { point } \\
\text { component }
\end{array}} d \xi .
$$

In the proof we exploit the decay estimate ave $\operatorname{ave}_{\nu}\left|\widehat{\mathbf{1}_{r, \nu}}(\xi)\right|^{2} \gtrsim \frac{R}{|\xi|^{3}}$.

Lower bounds

All rotations: Let P_{N} be an N-point set and $S(q, r, v)$ a square with center q, sidelength r, and angle ν. If $\mu=N \lambda-\sum_{p_{i} \in P_{N}} \delta\left(p-p_{i}\right)$, we have

$$
\int_{\mathbb{R}^{2}} D\left(P_{N}, S(q, r, \nu)\right)^{2} d q=\int_{\mathbb{R}^{2}} \underbrace{\left|\widehat{\mathbf{1}_{r, \nu}}(\xi)\right|^{2}}_{\begin{array}{c}
\text { shape } \\
\text { component }
\end{array}} \cdot \underbrace{|\widehat{\mu}(\xi)|^{2}}_{\begin{array}{c}
\text { point } \\
\text { component }
\end{array}} d \xi .
$$

In the proof we exploit the decay estimate ave ave $_{\nu}\left|\widehat{\mathbf{1}_{r, \nu}}(\xi)\right|^{2} \gtrsim \frac{R}{|\xi|^{3}}$.
Restricted Intervals: Suppose now that Ω is a smaller interval.
Issue: decay estimate now only holds for ξ in a sector of \mathbb{R}^{2} and since the behavior of $\widehat{\mu}$ is entirely dependent on the point set, it is unclear whether

$$
\int_{\mathbb{R}^{2}} D\left(P_{N}, S(q, r, \nu)\right)^{2} \stackrel{?}{\approx} \int_{\text {sector }}\left|\widehat{\mathbf{1}_{r, \nu}}(\xi)\right|^{2}|\widehat{\mu}(\xi)|^{2} d \xi
$$

Related problem: particular classes of convex sets

Let C be a convex body.

Given a unit vector $\Theta=(\cos \theta, \sin \theta)$, the length of the interval
$\gamma_{\Theta}(\delta)=\left\{x \in C: x \cdot \Theta=\inf _{y \in C}(y \cdot \Theta)+\delta\right\}$
measures smoothness and convexity of ∂C in the direction Θ.

- For any convex set, $\left|\gamma_{\Theta}(\delta)\right| \gtrsim \delta$
- For sets with C^{2} boundary e.g. discs, $\left|\gamma_{\Theta}(\delta)\right| \gtrsim \delta^{1 / 2}$.
L. Brandolini and G. Travaglini (2021): obtained discrepancy lower bounds for classes of translations and dilations of a convex body with certain smoothness properties: namely that have $\left|\gamma_{\Theta}(\delta)\right| \gtrsim \delta^{1 / 2}$ on some interval.

Back to rotated rectangles setting

Theorem (Bilyk, M., 2021)
If $\Omega=(-\theta, \theta)$ for some $\theta<\frac{\pi}{4}$, then $D\left(N, \mathcal{R}_{\Omega}\right) \gtrsim N^{1 / 5}$.
Proof outline (uses ideas from BT paper)

- Use decay estimates for shape component: $\gtrsim|\xi|^{-3}$ for ξ in sector; $\gtrsim|\xi|^{-4}$ for ξ outside
- Approximate the sector by suitably many rotated rectangles

- For $m \in \mathbb{Z}^{2}$, let $\Phi(m)$ be the number of rectangles m lies in
- Find ρ (depending on N) such that $\rho \Phi(m) \lesssim$ the decay estimates.
- Use estimates for exponential sums (capturing point component $\hat{\mu}$) over integer lattice points in rectangles centered at the origin.

Extension to Cantor sets of rotations

In recent work, using similar methods, we have obtained a lower bound for the case where the allowed rotations are given by Cantor sets.

Theorem (Bilyk, M., 2022)
Let $0<\lambda<\frac{1}{2}$ and let $I_{1,1}$ and $I_{1,2}$ be the intervals $[0, \lambda]$ and $[1-\lambda, 1]$ respectively. We iteratively remove intervals: if at step $k-1$ we have defined intervals $I_{k-1,1}, I_{k-1,2}, \cdots, I_{k-1,2^{k-1}}$, then we define $I_{k, 1}, I_{k, 2}, \cdots, I_{k, 2^{k}}$ by deleting from each $I_{k-1, j}$ an interval of length $(1-2 \lambda) \lambda^{k-1}$. If we let the resulting Cantor set be defined as

$$
\mathcal{C}(\lambda)=\bigcap_{k=0}^{\infty} \bigcup_{j=1}^{2^{k}} I_{k, j},
$$

then we have

$$
D\left(N, \mathcal{R}_{\mathcal{C}(\lambda)}\right) \gtrsim N^{1 /(7-2 \delta(\lambda))}
$$

where $\delta(\lambda)=\log (2) / \log (1 / \lambda)$ is the Hausdorff dimension of $\mathcal{C}(\lambda)$.

References

- J. Beck. Irregularities of distribution I. Acta Math., 159:1-49 (1987).
- D. Bilyk, X. Ma, J. Pipher and C. Spencer. Directional discrepancy in two dimensions, Bulletin of the London Mathematical Society, Vol. 43 No. 6 (2011).
- D. Bilyk, X. Ma, J. Pipher, and C. Spencer. Diophantine Approximations and Directional Discrepancy of Lattices, Transactions of the AMS, Vol. 68 No. 6, 3871-3897 (2016).
- L. Brandolini and G. Travaglini. Irregularities of Distribution and Geometry of Planar Convex Sets, Preprint (2021).
- Jiri Matousek, Geometric Discrepancy: An Illustrated Guide, Algorithms and Combinatorics Vol. 18 (2010).
- K.F. Roth. On irregularities of distribution. Mathematika 1, 73-79 (1954).
- S. Steinerberger. Spectral limitations of quadrature rules and generalized spherical designs, International Mathematics Research Notices, Vol. 2021, Issue 16, 12265-12280 (2021).

Moments of Gaussian quadratic forms with values in Banach space.

Rafał Meller (based on joint work with R. Adamczak and R. Latała)

University of Warsaw
Atlanta May 2022

Motivation

Theorem (Classical Hanson-Wright inequality)

Let $\left(X_{i}\right)_{i \in \mathbb{N}}$ be independent, α-subgaussian r.v's and $A=\left(a_{i j}\right)$ be a real-values matrix. Then

$$
\left.\mathbb{P}\left(\left|\sum_{i j} a_{i j}\left(X_{i} X_{j}-\mathbb{E} X_{i} X_{j}\right)\right| \geq t\right) \leq 2 e^{-\min \left(\frac{t^{2}}{c a^{4} \sum_{i j}^{2} j_{i j}^{2}}, \frac{t}{c \alpha^{2}\|A\| \ell_{2} \rightarrow \ell_{2}}\right.}\right) .
$$

Motivation

Theorem (Classical Hanson-Wright inequality)

Let $\left(X_{i}\right)_{i \in \mathbb{N}}$ be independent, α-subgaussian r.v's and $A=\left(a_{i j}\right)$ be a real-values matrix. Then

$$
\mathbb{P}\left(\left|\sum_{i j} a_{i j}\left(X_{i} X_{j}-\mathbb{E} X_{i} X_{j}\right)\right| \geq t\right) \leq 2 e^{-\min \left(\frac{t^{2}}{c a^{4} \sum \sum_{i j}^{2} j_{i j}^{2}}, \frac{t}{c \alpha^{2}\|A\| l_{2} \rightarrow \ell_{2}}\right)} .
$$

Natural questions:

$$
\mathbb{P}\left(\sup _{k}\left|\sum_{i j} a_{i j}^{k}\left(X_{i} X_{j}-\mathbb{E} X_{i} X_{j}\right)\right| \geq t\right) \leq ?
$$

Motivation

Theorem (Classical Hanson-Wright inequality)

Let $\left(X_{i}\right)_{i \in \mathbb{N}}$ be independent, α-subgaussian r.v's and $A=\left(a_{i j}\right)$ be a real-values matrix. Then

$$
\left.\mathbb{P}\left(\left|\sum_{i j} a_{i j}\left(X_{i} X_{j}-\mathbb{E} X_{i} X_{j}\right)\right| \geq t\right) \leq 2 e^{-\min \left(\frac{t^{2}}{C \alpha^{4} \sum_{i j} j_{i j}^{2}}, \frac{t}{c \alpha^{2}\|A\| \ell_{2} \rightarrow \ell_{2}}\right.}\right) .
$$

Natural questions:

$$
\begin{array}{r}
\mathbb{P}\left(\sup _{k}\left|\sum_{i j} a_{i j}^{k}\left(X_{i} X_{j}-\mathbb{E} X_{i} X_{j}\right)\right| \geq t\right) \leq ? \\
\mathbb{P}\left(\sqrt[q]{\sum_{k}\left|\sum_{i j} a_{i j}^{k}\left(X_{i} X_{j}-\mathbb{E} X_{i} X_{j}\right)\right|^{q}} \geq t\right) \leq ?
\end{array}
$$

Motivation

Theorem (Classical Hanson-Wright inequality)

Let $\left(X_{i}\right)_{i \in \mathbb{N}}$ be independent, α-subgaussian r.v's and $A=\left(a_{i j}\right)$ be a real-values matrix. Then

$$
\left.\mathbb{P}\left(\left|\sum_{i j} a_{i j}\left(X_{i} X_{j}-\mathbb{E} X_{i} X_{j}\right)\right| \geq t\right) \leq 2 e^{-\min \left(\frac{t^{2}}{c \alpha^{4} \sum_{i j}^{2} j_{i j}^{2}}, \frac{t}{c \alpha^{2}\|A\| l_{2} \rightarrow \ell_{2}}\right.}\right) .
$$

Natural questions:

$$
\begin{aligned}
& \underset{k}{\mathbb{P}}\left(\sup _{k}\left|\sum_{i j} a_{i j}^{k}\left(X_{i} X_{j}-\mathbb{E} X_{i} X_{j}\right)\right| \geq t\right) \leq ? \\
& \mathbb{P}\left(\sqrt[a]{\sum_{k}\left|\sum_{i j} a_{i j}^{k}\left(X_{i} X_{j}-\mathbb{E} X_{i} X_{j}\right)\right|^{q}} \geq t\right) \leq ? \\
& \mathbb{P}\left(\left\|\sum_{i j} b_{i j}\left(X_{i} X_{j}-\mathbb{E} X_{i} X_{j}\right)\right\| \geq t\right) \leq ?
\end{aligned}
$$

where $b_{i j} \in(F,\|\cdot\|)$ (normed space).

Motivation

Theorem (Classical Hanson-Wright inequality)

Let $\left(X_{i}\right)_{i \in \mathbb{N}}$ be independent, α-subgaussian r.v's and $A=\left(a_{i j}\right)$ be a real-values matrix. Then

$$
\left.\mathbb{P}\left(\left|\sum_{i j} a_{i j}\left(X_{i} X_{j}-\mathbb{E} X_{i} X_{j}\right)\right| \geq t\right) \leq 2 e^{-\min \left(\frac{t^{2}}{c \alpha^{4} \sum_{i j} j_{i j}^{2}}, \frac{t}{c \alpha^{2}\|A\| \ell_{2} \rightarrow \ell_{2}}\right.}\right) .
$$

Natural questions:

$$
\begin{array}{r}
\mathbb{P}\left(\sup _{k}\left|\sum_{i j} a_{i j}^{k}\left(X_{i} X_{j}-\mathbb{E} X_{i} X_{j}\right)\right| \geq t\right) \leq ? \\
\mathbb{P}\left(\sqrt[q]{\sum_{k}\left|\sum_{i j} a_{i j}^{k}\left(X_{i} X_{j}-\mathbb{E} X_{i} X_{j}\right)\right|^{q}} \geq t\right) \leq ? \\
\mathbb{P}\left(\left\|\sum_{i j} b_{i j}\left(X_{i} X_{j}-\mathbb{E} X_{i} X_{j}\right)\right\| \geq t\right) \leq ?
\end{array}
$$

where $b_{i j} \in(F,\|\cdot\|)$ (normed space).

From moments to tails

Let $(F,\|\cdot\|)$ be a normed space and $A=\left(a_{i j}\right)$ be an F-valued matrix. Standard argument gives

$$
\mathbb{P}\left(\left\|\sum_{i j} a_{i j}\left(X_{i} X_{j}-\mathbb{E} X_{i} X_{j}\right)\right\| \geq t\right) \leq C(\alpha) \mathbb{P}\left(\left\|\sum_{i j} a_{i j}\left(g_{i} g_{j}-\delta_{i=j}\right)\right\| \geq c(\alpha) t\right)
$$

From moments to tails

Let $(F,\|\cdot\|)$ be a normed space and $A=\left(a_{i j}\right)$ be an F-valued matrix. Standard argument gives

$$
\mathbb{P}\left(\left\|\sum_{i j} a_{i j}\left(X_{i} X_{j}-\mathbb{E} X_{i} X_{j}\right)\right\| \geq t\right) \leq C(\alpha) \mathbb{P}\left(\left\|\sum_{i j} a_{i j}\left(g_{i} g_{j}-\delta_{i=j}\right)\right\| \geq c(\alpha) t\right)
$$

The latter can be estimated by Markov inequality:

$$
\mathbb{P}\left(\left\|\sum_{i j} a_{i j}\left(g_{i} g_{j}-\delta_{i=j}\right)\right\| \geq t\right) \leq \inf _{p}\left(\frac{\sqrt[p]{\mathbb{E}\left\|\sum_{i j} a_{i j}\left(g_{i} g_{j}-\delta_{i=j}\right)\right\|^{p}}}{t^{p}}\right)^{p}
$$

It can be shown that the above is optimal (two-sided) using Paley-Zygmund inequality.

From moments to tails

Let $(F,\|\cdot\|)$ be a normed space and $A=\left(a_{i j}\right)$ be an F-valued matrix. Standard argument gives

$$
\mathbb{P}\left(\left\|\sum_{i j} a_{i j}\left(X_{i} X_{j}-\mathbb{E} X_{i} X_{j}\right)\right\| \geq t\right) \leq C(\alpha) \mathbb{P}\left(\left\|\sum_{i j} a_{i j}\left(g_{i} g_{j}-\delta_{i=j}\right)\right\| \geq c(\alpha) t\right)
$$

The latter can be estimated by Markov inequality:

$$
\mathbb{P}\left(\left\|\sum_{i j} a_{i j}\left(g_{i} g_{j}-\delta_{i=j}\right)\right\| \geq t\right) \leq \inf _{p}\left(\frac{\sqrt[p]{\mathbb{E}\left\|\sum_{i j} a_{i j}\left(g_{i} g_{j}-\delta_{i=j}\right)\right\|^{p}}}{t^{p}}\right)^{p}
$$

It can be shown that the above is optimal (two-sided) using Paley-Zygmund inequality.

Problem

$\sqrt{\mathbb{E}}\left\|\sum_{i j} a_{i j}\left(g_{i} g_{j}-\delta_{i=j}\right)\right\|^{p} \approx ? ?$

Known results

Theorem (Borell, Arcones, Giné, Ledoux, Talagrand)
Let $(F,\|\cdot\|)$ be a Banach space and A be a symmetric, F-valued matrix.
Then $\sqrt[p]{\mathbb{E}\left\|\sum_{i j} a_{i j}\left(g_{i} g_{j}-\delta_{i j}\right)\right\|^{p}} \approx$

$$
\approx \mathbb{E}\left\|\sum_{i j} a_{i j}\left(g_{i} g_{j}-\delta_{i j}\right)\right\|+\sqrt{p \mathbb{E}} \sup _{x \in B_{2}^{n}}\left\|\sum_{i j} a_{i j} g_{i} x_{j}\right\|+p \sup _{x, y \in B_{2}^{n}}\left\|\sum_{i j} a_{i j} x_{i} y_{j}\right\| .
$$

Known results

Theorem (Borell, Arcones, Giné, Ledoux, Talagrand)
Let $(F,\|\cdot\|)$ be a Banach space and A be a symmetric, F-valued matrix. Then $\sqrt[p]{\mathbb{E}\left\|\sum_{i j} a_{i j}\left(g_{i} g_{j}-\delta_{i j}\right)\right\|^{p}} \approx$

$$
\approx \mathbb{E}\left\|\sum_{i j} a_{i j}\left(g_{i} g_{j}-\delta_{i j}\right)\right\|+\sqrt{p \mathbb{E}} \sup _{x \in B_{2}^{n}}\left\|\sum_{i j} a_{i j} g_{i} x_{j}\right\|+p \sup _{x, y \in B_{2}^{n}}\left\|\sum_{i j} a_{i j} x_{i} y_{j}\right\| .
$$

Known results

Theorem (Borell, Arcones, Giné, Ledoux, Talagrand)

Let $(F,\|\cdot\|)$ be a Banach space and A be a symmetric, F-valued matrix.
Then $\sqrt[p]{\mathbb{E}\left\|\sum_{i j} a_{i j}\left(g_{i} g_{j}-\delta_{i j}\right)\right\|^{p}} \approx$

$$
\approx \mathbb{E}\left\|\sum_{i j} a_{i j}\left(g_{i} g_{j}-\delta_{i j}\right)\right\|+\sqrt{p \mathbb{E}} \sup _{x \in B_{2}^{n}}\left\|\sum_{i j} a_{i j} g_{i} x_{j}\right\|+p \sup _{x, y \in B_{2}^{n}}\left\|\sum_{i j} a_{i j} x_{i} y_{j}\right\| .
$$

Known results

Theorem (Borell, Arcones, Giné, Ledoux, Talagrand)

Let $(F,\|\cdot\|)$ be a Banach space and A be a symmetric, F-valued matrix.
Then $\sqrt[p]{\mathbb{E}\left\|\sum_{i j} a_{i j}\left(g_{i} g_{j}-\delta_{i j}\right)\right\|^{p}} \approx$

$$
\approx \mathbb{E}\left\|\sum_{i j} a_{i j}\left(g_{i} g_{j}-\delta_{i j}\right)\right\|+\sqrt{p \mathbb{E}} \sup _{x \in B_{2}^{n}}\left\|\sum_{i j} a_{i j} g_{i} x_{j}\right\|+p \sup _{x, y \in B_{2}^{n}}\left\|\sum_{i j} a_{i j} x_{i} y_{j}\right\| .
$$

Example $\left(F=\ell_{q}\right)$

$$
\mathbb{E} \sup _{x \in B_{2}^{n}}\left\|\sum_{i j} a_{i j} g_{i} x_{j}\right\|_{\ell_{q}}=\mathbb{E} \sup _{x \in B_{2}^{n}} \sqrt{\sum_{k}\left|a_{i j}^{k} g_{i} x_{j}\right|^{q}} \stackrel{q=2}{=} \mathbb{E} \sup _{x, y \in B_{2}^{n}} \sum_{i j k} a_{i j}^{k} g_{i} x_{j} y_{k}
$$

The latter expression was estimated by R. Latała in 2006.

Known results

Theorem (Borell, Arcones, Giné, Ledoux, Talagrand)

Let $(F,\|\cdot\|)$ be a Banach space and A be a symmetric, F-valued matrix.
Then $\sqrt[p]{\mathbb{E}\left\|\sum_{i j} a_{i j}\left(g_{i} g_{j}-\delta_{i j}\right)\right\|^{p}} \approx$

$$
\approx \mathbb{E}\left\|\sum_{i j} a_{i j}\left(g_{i} g_{j}-\delta_{i j}\right)\right\|+\sqrt{p \mathbb{E}} \sup _{x \in B_{2}^{n}}\left\|\sum_{i j} a_{i j} g_{i} x_{j}\right\|+p \sup _{x, y \in B_{2}^{n}}\left\|\sum_{i j} a_{i j} x_{i} y_{j}\right\| .
$$

Example $\left(F=\ell_{q}\right)$

$$
\mathbb{E} \sup _{x \in B_{2}^{n}}\left\|\sum_{i j} a_{i j} g_{i} x_{j}\right\|_{\ell_{q}}=\mathbb{E} \sup _{x \in B_{2}^{n}} \sqrt[q]{\sum_{k}\left|a_{i j}^{k} g_{i} x_{j}\right|^{q}} \stackrel{q=2}{=} \mathbb{E} \sup _{x, y \in B_{2}^{n}} \sum_{i j k} a_{i j}^{k} g_{i} x_{j} y_{k}
$$

The latter expression was estimated by R. Latała in 2006. Goal: replace problematic term by $\sup _{x \in B_{2}^{n}} \mathbb{E}\left\|\sum_{i j} a_{i j} g_{i} x_{j}\right\|$

New results

Theorem (R. Adamczak, R. Latała, R. Meller)

Under the assumption of the previous theorem we have

$$
\begin{aligned}
\sqrt[p]{\mathbb{E}\left\|\sum_{i j} a_{i j}\left(g_{i} g_{j}-\delta_{i j}\right)\right\|^{p}} & \lesssim \mathbb{E}\left\|\sum_{i j} a_{i j}\left(g_{i} g_{j}-\delta_{i j}\right)\right\|+\mathbb{E}\left\|\sum_{i \neq j} a_{i j} g_{i j}\right\| \\
+ & \sqrt{p} \sup _{x \in B_{2}^{n}} \mathbb{E}\left\|\sum_{i j} a_{i j} g_{i} x_{j}\right\|+\sqrt{p} \sup _{x \in B_{2}^{n^{2}}}\left\|\sum_{i j} a_{i j} x_{i j}\right\| \\
& +p \sup _{x, y \in B_{2}^{n}}\left\|\sum_{i j} a_{i j} x_{i} y_{j}\right\| .
\end{aligned}
$$

New results

Theorem (R. Adamczak, R. Latała, R. Meller)

Under the assumption of the previous theorem we have

$$
\begin{aligned}
\sqrt[p]{\mathbb{E}\left\|\sum_{i j} a_{i j}\left(g_{i} g_{j}-\delta_{i j}\right)\right\|^{p}} & \lesssim \mathbb{E}\left\|\sum_{i j} a_{i j}\left(g_{i} g_{j}-\delta_{i j}\right)\right\|+\mathbb{E}\left\|\sum_{i \neq j} a_{i j} g_{i j}\right\| \\
+ & \sqrt{p} \sup _{x \in B_{2}^{n}} \mathbb{E}\left\|\sum_{i j} a_{i j} g_{i} x_{j}\right\|+\sqrt{p} \sup _{x \in B_{2}^{n^{2}}}\left\|\sum_{i j} a_{i j} x_{i j}\right\| \\
& +p \sup _{x, y \in B_{2}^{n}}\left\|\sum_{i j} a_{i j} x_{i} y_{j}\right\| .
\end{aligned}
$$

New results

Theorem (R. Adamczak, R. Latała, R. Meller)

Under the assumption of the previous theorem we have

$$
\begin{aligned}
& \sqrt[p]{\mathbb{E}\left\|\sum_{i j} a_{i j}\left(g_{i} g_{j}-\delta_{i j}\right)\right\|^{p}} \lesssim \mathbb{E}\left\|\sum_{i j} a_{i j}\left(g_{i} g_{j}-\delta_{i j}\right)\right\|+\mathbb{E}\left\|\sum_{i \neq j} a_{i j} g_{i j}\right\| \\
&+\sqrt{p} \sup _{x \in B_{2}^{n}}^{\mathbb{E}}\left\|\sum_{i j} a_{i j} g_{i} x_{j}\right\|+\sqrt{p} \sup _{x \in B_{2}^{n 2}}\left\|\sum_{i j} a_{i j} x_{i j}\right\| \\
&+p \sup _{x, y \in B_{2}^{n}}\left\|\sum_{i j} a_{i j} x_{i} y_{j}\right\| .
\end{aligned}
$$

Advantages: sup outside the \mathbb{E}, holds in any Banach space.

New results

Theorem (R. Adamczak, R. Latała, R. Meller)

Under the assumption of the previous theorem we have

$$
\begin{aligned}
& \sqrt[p]{\mathbb{E}\left\|\sum_{i j} a_{i j}\left(g_{i} g_{j}-\delta_{i j}\right)\right\|^{p}} \lesssim \mathbb{E}\left\|\sum_{i j} a_{i j}\left(g_{i} g_{j}-\delta_{i j}\right)\right\|+\mathbb{E}\left\|\sum_{i \neq j} a_{i j} g_{i j}\right\| \\
&+\sqrt{p} \sup _{x \in B_{2}^{n}}\| \| \sum_{i j} a_{i j} g_{i} x_{j}\left\|+\sqrt{p} \sup _{x \in B_{2}^{n 2}}\right\| \sum_{i j} a_{i j} x_{i j} \| \\
&+p \sup _{x, y \in B_{2}^{n}}\left\|\sum_{i j} a_{i j} x_{i} y_{j}\right\| .
\end{aligned}
$$

Advantages: sup outside the \mathbb{E}, holds in any Banach space.
Small disadvantages: new yellow term

New results

Theorem (R. Adamczak, R. Latała, R. Meller)

Under the assumption of the previous theorem we have

$$
\begin{aligned}
\sqrt[p]{\mathbb{E}\left\|\sum_{i j} a_{i j}\left(g_{i} g_{j}-\delta_{i j}\right)\right\|^{p}} & \lesssim \mathbb{E}\left\|\sum_{i j} a_{i j}\left(g_{i} g_{j}-\delta_{i j}\right)\right\|+\mathbb{E}\left\|\sum_{i \neq j} a_{i j} g_{i j}\right\| \\
+ & \sqrt{p} \sup _{x \in B_{2}^{n}} \mathbb{E}\left\|\sum_{i j} a_{i j} g_{i} x_{j}\right\|+\sqrt{p} \sup _{x \in B_{2}^{n^{2}}}\left\|\sum_{i j} a_{i j} x_{i j}\right\| \\
& +p \sup _{x, y \in B_{2}^{n}}\left\|\sum_{i j} a_{i j} x_{i} y_{j}\right\| .
\end{aligned}
$$

Advantages: sup outside the \mathbb{E}, holds in any Banach space.
Small disadvantages: new yellow term
Disadvantages: not two sided because of red term (take $\left(M_{n \times n}(\mathbb{R}),\|\cdot\|_{*}\right)$, where $\left.\|A\|_{*}=\sup _{\|T\|_{o p}=1, T \in M_{n \times n}} \sum a_{i j} t_{i j}.\right)$

New results

Theorem (R. Adamczak, R. Latała, R. Meller)

Under the assumption of the previous theorem we have

$$
\begin{aligned}
\sqrt[p]{\mathbb{E}\left\|\sum_{i j} a_{i j}\left(g_{i} g_{j}-\delta_{i j}\right)\right\|^{p}} & \lesssim \mathbb{E}\left\|\sum_{i j} a_{i j}\left(g_{i} g_{j}-\delta_{i j}\right)\right\|+\mathbb{E}\left\|\sum_{i \neq j} a_{i j} g_{i j}\right\| \\
+ & \sqrt{p} \sup _{x \in B_{2}^{n}} \mathbb{E}\left\|\sum_{i j} a_{i j} g_{i} x_{j}\right\|+\sqrt{p} \sup _{x \in B_{2}^{n^{2}}}\left\|\sum_{i j} a_{i j} x_{i j}\right\| \\
& +p \sup _{x, y \in B_{2}^{n}}\left\|\sum_{i j} a_{i j} x_{i} y_{j}\right\| .
\end{aligned}
$$

Advantages: sup outside the \mathbb{E}, holds in any Banach space. Also the red term is not so difficult to estimate. Small disadvantages: new yellow term
Disadvantages: not two sided because of red term (take $\left(M_{n \times n}(\mathbb{R}),\|\cdot\|_{*}\right)$, where $\left.\|A\|_{*}=\sup _{\|T\|_{o p}=1, T \in M_{n \times n}} \sum a_{i j} t_{i j}.\right)$

Case of L_{q} spaces.

The previous inequality can be reversed if $(F,\|\cdot\|)$ satisfies

For any F-valued matrix $A \rightarrow \mathbb{E}\left\|\sum_{i \neq j} a_{i j} g_{i j}\right\| \leq C(F)\left\|\sum_{i j} a_{i j}\left(g_{i} g_{j}-\delta_{i j}\right)\right\|$

Case of L_{q} spaces.

The previous inequality can be reversed if $(F,\|\cdot\|)$ satisfies

For any F-valued matrix $A \rightarrow \mathbb{E}\left\|\sum_{i \neq j} a_{i j} g_{i j}\right\| \leq C(F)\left\|\sum_{i j} a_{i j}\left(g_{i} g_{j}-\delta_{i j}\right)\right\|$
The above hold in L_{q} space, type 2 spaces. For Banach Lattices it is equivalent to finite cotype (in general finite cotype is not enough).

Case of L_{q} spaces.

The previous inequality can be reversed if $(F,\|\cdot\|)$ satisfies

For any F-valued matrix $A \rightarrow \mathbb{E}\left\|\sum_{i \neq j} a_{i j} g_{i j}\right\| \leq C(F)\left\|\sum_{i j} a_{i j}\left(g_{i} g_{j}-\delta_{i j}\right)\right\|$
The above hold in L_{q} space, type 2 spaces. For Banach Lattices it is equivalent to finite cotype (in general finite cotype is not enough).

Theorem (R. Adamczak, R. Latała, R. Meller)

In L_{q} spaces the following is true

$$
\begin{aligned}
\sqrt[p]{\left\|\sum_{i j} a_{i j}\left(g_{i} g_{j}-\delta_{i j}\right)\right\|_{L_{q}}^{p}} & \sim q\left\|\sqrt{\sum_{i j} a_{i j}^{2}}\right\|_{L_{q}}+\sqrt{p} \sup _{x \in B_{2}^{n^{2}}}\left\|\sum_{i j} a_{i j} x_{i j}\right\|_{L_{q}} \\
+\sqrt{p} \sup _{x \in B_{2}^{n}} & \| \sqrt{\sum_{i}\left(\sum_{j} a_{i j} x_{j}\right)^{2}\left\|_{L_{q}}+p \sup _{x, y \in B_{2}^{n}}\right\| \sum_{i j} a_{i j} x_{i} y_{j} \|_{L_{q}}} .
\end{aligned}
$$

Case of L_{q} spaces.

The previous inequality can be reversed if $(F,\|\cdot\|)$ satisfies

For any F-valued matrix $A \rightarrow \mathbb{E}\left\|\sum_{i \neq j} a_{i j} g_{i j}\right\| \leq C(F)\left\|\sum_{i j} a_{i j}\left(g_{i} g_{j}-\delta_{i j}\right)\right\|$
The above hold in L_{q} space, type 2 spaces. For Banach Lattices it is equivalent to finite cotype (in general finite cotype is not enough).

Theorem (R. Adamczak, R. Latała, R. Meller)

In L_{q} spaces the following is true (no \mathbb{E} on the RHS! deterministic bound)

$$
\begin{aligned}
& \sqrt[p]{\left\|\sum_{i j} a_{i j}\left(g_{i} g_{j}-\delta_{i j}\right)\right\|_{L_{q}}^{p}} \sim{ }^{q}\left\|\sqrt{\sum_{i j} a_{i j}^{2}}\right\|_{L_{q}}+\sqrt{p} \sup _{x \in B_{2}^{n^{2}}}\left\|\sum_{i j} a_{i j} x_{i j}\right\|_{L_{q}} \\
&+\sqrt{p} \sup _{x \in B_{2}^{n}} \| \sqrt{\sum_{i}\left(\sum_{j} a_{i j} x_{j}\right)^{2}\left\|L_{q}+p \sup _{x, y \in B_{2}^{n}}\right\| \sum_{i j} a_{i j} x_{i} y_{j} \|_{L_{q}} .}
\end{aligned}
$$

Extreme points of a subset of log-concave probability sequences

Heshan Aravinda (University of Florida)
(based on joint work with Arnaud Marsiglietti)

Workshop in Convexity and High-Dimensional Probability - Georgia Tech May 23-27, 2022
(1) Introduction
(2) A discrete localization
(3) Applications
(4) A generalized localization in \mathbb{Z}

Log-concave Distributions

Definition

A random variable X on \mathbb{Z} is said to be log-concave if its probability mass function p satisfies,

$$
p^{2}(n) \geq p(n+1) p(n-1) \text { for all } n \in \mathbb{Z}
$$

and X has a contiguous support.

Log-concave Distributions

Definition

A random variable X on \mathbb{Z} is said to be log-concave if its probability mass function p satisfies,

$$
p^{2}(n) \geq p(n+1) p(n-1) \text { for all } n \in \mathbb{Z}
$$

and X has a contiguous support.

Examples:

- Bernoulli.
- Geometric distribution.
- Poisson.
- Binomial.
- Discrete uniform distribution.

Log-concave probability sequences

Log-concave probability sequences

Log-concave measures and their geometry are well-understood in the continuous setting!!

Log-concave probability sequences

Log-concave measures and their geometry are well-understood in the continuous setting!!

One would like to investigate the class of discrete log-concave probabilities on \mathbb{Z}.

Log-concave probability sequences

Log-concave measures and their geometry are well-understood in the continuous setting!!

One would like to investigate the class of discrete log-concave probabilities on \mathbb{Z}.

Ex:

- Properties of log-concave sequences.
- Geometric and functional inequalities.
- Concentration bounds.

A Discrete Localization (Marsiglietti \& Melbourne - 2020)

Motivation: The work done by Fradelizi \& Guédon (2004) in the continuous setting.

A Discrete Localization (Marsiglietti \& Melbourne - 2020)

Motivation: The work done by Fradelizi \& Guédon (2004) in the continuous setting.

Goal: Identifying the extremal distribution of the class of log-concave probabilities on \mathbb{Z} satisfying a mean constraint.

A Discrete Localization (Marsiglietti \& Melbourne - 2020)

Motivation: The work done by Fradelizi \& Guédon (2004) in the continuous setting.

Goal: Identifying the extremal distribution of the class of log-concave probabilities on \mathbb{Z} satisfying a mean constraint.

Notation:

A Discrete Localization (Marsiglietti \& Melbourne - 2020)

Motivation: The work done by Fradelizi \& Guédon (2004) in the continuous setting.

Goal: Identifying the extremal distribution of the class of log-concave probabilities on \mathbb{Z} satisfying a mean constraint.

Notation: Let $M, N \in \mathbb{Z}$.

A Discrete Localization (Marsiglietti \& Melbourne - 2020)

Motivation: The work done by Fradelizi \& Guédon (2004) in the continuous setting.

Goal: Identifying the extremal distribution of the class of log-concave probabilities on \mathbb{Z} satisfying a mean constraint.

Notation: Let $M, N \in \mathbb{Z}$.

- $[M, N]=\{M, M+1, M+2, \ldots, N\}$.

A Discrete Localization (Marsiglietti \& Melbourne - 2020)

Motivation: The work done by Fradelizi \& Guédon (2004) in the continuous setting.

Goal: Identifying the extremal distribution of the class of log-concave probabilities on \mathbb{Z} satisfying a mean constraint.

Notation: Let $M, N \in \mathbb{Z}$.

- $[M, N]=\{M, M+1, M+2, \ldots, N\}$.
- $\mathcal{P}([M, N])$: The set of all probabilities supported on $[M, N]$.

A Discrete Localization (Marsiglietti \& Melbourne - 2020)

Motivation: The work done by Fradelizi \& Guédon (2004) in the continuous setting.

Goal: Identifying the extremal distribution of the class of log-concave probabilities on \mathbb{Z} satisfying a mean constraint.

Notation: Let $M, N \in \mathbb{Z}$.

- $[M, N]=\{M, M+1, M+2, \ldots, N\}$.
- $\mathcal{P}([M, N])$: The set of all probabilities supported on $[M, N]$.
- γ : A measure with contiguous support on \mathbb{Z} and mass function q.

A Discrete Localization (Marsiglietti \& Melbourne - 2020)

Motivation: The work done by Fradelizi \& Guédon (2004) in the continuous setting.

Goal: Identifying the extremal distribution of the class of log-concave probabilities on \mathbb{Z} satisfying a mean constraint.

Notation: Let $M, N \in \mathbb{Z}$.

- $[M, N]=\{M, M+1, M+2, \ldots, N\}$.
- $\mathcal{P}([M, N])$: The set of all probabilities supported on $[M, N]$.
- γ : A measure with contiguous support on \mathbb{Z} and mass function q.
- h : An arbitrary real-valued function defined on $[M, N]$.

A Discrete Localization (Marsiglietti \& Melbourne - 2020)

Motivation: The work done by Fradelizi \& Guédon (2004) in the continuous setting.

Goal: Identifying the extremal distribution of the class of log-concave probabilities on \mathbb{Z} satisfying a mean constraint.

Notation: Let $M, N \in \mathbb{Z}$.

- $[M, N]=\{M, M+1, M+2, \ldots, N\}$.
- $\mathcal{P}([M, N])$: The set of all probabilities supported on $[M, N]$.
- γ : A measure with contiguous support on \mathbb{Z} and mass function q.
- h : An arbitrary real-valued function defined on $[M, N]$.

Consider the following set.
$\mathcal{P}_{h}^{\gamma}([M, N])=\left\{\mathbb{P}_{X} \in \mathcal{P}([M, N]):\right.$ X log-concave w.r.t $\left.\gamma, \mathbb{E}[h(X)] \geq 0\right\}$.

A Discrete Localization ctd...

Theorem (Marsiglietti \& Melbourne - 2020)

If $\mathbb{P}_{X} \in \operatorname{Conv}\left(\mathcal{P}_{h}^{\gamma}([M, N])\right)$ is an extreme point, then its proba. mass function f w.r.t γ satisfies,

$$
f(n)=C p^{n} q(n) 1_{[k, l]},
$$

where $C, p>0$ and $k, l \in[M, N]$.

A Discrete Localization ctd...

Theorem (Marsiglietti \& Melbourne - 2020)

If $\mathbb{P}_{X} \in \operatorname{Conv}\left(\mathcal{P}_{h}^{\gamma}([M, N])\right)$ is an extreme point, then its proba. mass function f w.r.t γ satisfies,

$$
\begin{equation*}
f(n)=C p^{n} q(n) 1_{[k, l]}, \tag{*}
\end{equation*}
$$

where $C, p>0$ and $k, l \in[M, N]$.

Corollary

Let $\Phi: \mathcal{P}_{h}^{\gamma}([M, N]) \rightarrow \mathbb{R}$ be convex. Then,

$$
\sup _{\mathcal{E} \mathcal{P}_{h}^{\gamma}([M, N])} \Phi\left(\mathbb{P}_{X}\right) \leq \sup _{\mathbb{P}_{X} \in \mathcal{A}_{h}^{\gamma}([M, N])} \Phi\left(\mathbb{P}_{X}\right),
$$

A Discrete Localization ctd...

Theorem (Marsiglietti \& Melbourne - 2020)

If $\mathbb{P}_{X} \in \operatorname{Conv}\left(\mathcal{P}_{h}^{\gamma}([M, N])\right)$ is an extreme point, then its proba. mass function f w.r.t γ satisfies,

$$
f(n)=C p^{n} q(n) 1_{[k, l]},
$$

where $C, p>0$ and $k, l \in[M, N]$.

Corollary

Let $\Phi: \mathcal{P}_{h}^{\gamma}([M, N]) \rightarrow \mathbb{R}$ be convex. Then,

$$
\sup _{\mathcal{E} \mathcal{P}_{h}^{\gamma}([M, N])} \Phi\left(\mathbb{P}_{X}\right) \leq \sup _{\mathbb{P}_{X} \in \mathcal{A}_{h}^{\gamma}([M, N])} \Phi\left(\mathbb{P}_{X}\right),
$$

where $\mathcal{A}_{h}^{\gamma}([M, N])=\mathcal{P}_{h}^{\gamma}([M, N]) \cap\left\{\mathbb{P}_{X}: X\right.$ with PMF as in $\left.(\star)\right\}$

Applications

Applications

(1) Combinatorial results.

- Convolution of log-concave and ultra log-concave sequences.
- A walkup-type theorem.

$$
\left\{a_{k}\right\} \text { is } \mathrm{LC} \Longrightarrow\left\{c_{k}\right\} \text { defined by } c_{k}=\sum_{n \geq k}\binom{n}{k} a_{n} \text { is LC. }
$$

Applications

(1) Combinatorial results.

- Convolution of log-concave and ultra log-concave sequences.
- A walkup-type theorem.

$$
\left\{a_{k}\right\} \text { is } \mathrm{LC} \Longrightarrow\left\{c_{k}\right\} \text { defined by } c_{k}=\sum_{n \geq k}\binom{n}{k} a_{n} \text { is } \mathrm{LC} \text {. }
$$

(2) A discrete version of Prékopa-Leindler inequality.

Applications

(1) Combinatorial results.

- Convolution of log-concave and ultra log-concave sequences.
- A walkup-type theorem.

$$
\left\{a_{k}\right\} \text { is } \mathrm{LC} \Longrightarrow\left\{c_{k}\right\} \text { defined by } c_{k}=\sum_{n \geq k}\binom{n}{k} a_{n} \text { is LC. }
$$

(2) A discrete version of Prékopa-Leindler inequality.
(3) Small \& large deviation inequalities for log-concave probability sequences.

Applications

(1) Combinatorial results.

- Convolution of log-concave and ultra log-concave sequences.
- A walkup-type theorem.

$$
\left\{a_{k}\right\} \text { is } \mathrm{LC} \Longrightarrow\left\{c_{k}\right\} \text { defined by } c_{k}=\sum_{n \geq k}\binom{n}{k} a_{n} \text { is } \mathrm{LC} .
$$

(2) A discrete version of Prékopa-Leindler inequality.
(3) Small \& large deviation inequalities for log-concave probability sequences.
(9) A concentration for ultra log-concave distributions (HA, Marsiglietti \& Melbourne - 2021).

Concentration for ULC random variables

Concentration for ULC random variables

Theorem (HA, Marsiglietti \& Melbourne - 2021)
Let X be ultra log-concave. Then,

$$
\begin{gathered}
\mathbb{P}(|X-\mathbb{E}[X]| \geq t) \leq 2 e^{\frac{-t^{2}}{2(t+\mathbb{E}[X])}} \text { for all } t \geq 0 . \\
\operatorname{Var}(X) \leq \mathbb{E}[X] .
\end{gathered}
$$

Concentration for ULC random variables

Theorem (HA, Marsiglietti \& Melbourne - 2021)
Let X be ultra log-concave. Then,

$$
\begin{gathered}
\mathbb{P}(|X-\mathbb{E}[X]| \geq t) \leq 2 e^{\frac{-t^{2}}{2(t+\mathbb{E}[X])}} \text { for all } t \geq 0 . \\
\operatorname{Var}(X) \leq \mathbb{E}[X] .
\end{gathered}
$$

Consequence:

Concentration for ULC random variables

Theorem (HA, Marsiglietti \& Melbourne - 2021)

Let X be ultra log-concave. Then,

$$
\begin{gathered}
\mathbb{P}(|X-\mathbb{E}[X]| \geq t) \leq 2 e^{\frac{-t^{2}}{2(t+\mathbb{E}[X])}} \text { for all } t \geq 0 \\
\operatorname{Var}(X) \leq \mathbb{E}[X]
\end{gathered}
$$

Consequence:

Let $K \subseteq \mathbb{R}^{n}$ be a convex body. Denote by Z_{K}, the intrinsic volume random variable associated with K. Then,

$$
\begin{gathered}
\mathbb{P}\left(\left|Z_{K}-\mathbb{E}\left[Z_{K}\right]\right| \geq t \sqrt{n}\right) \leq 2 e^{-\frac{1}{2} t^{2}} \text { for all } 0 \leq t \leq \sqrt{n} \\
\operatorname{Var}\left[Z_{k}\right] \leq n
\end{gathered}
$$

Concentration for ULC random variables

Theorem (HA, Marsiglietti \& Melbourne - 2021)

Let X be ultra log-concave. Then,

$$
\begin{gathered}
\mathbb{P}(|X-\mathbb{E}[X]| \geq t) \leq 2 e^{\frac{-t^{2}}{2(t+\mathbb{E}[X])}} \text { for all } t \geq 0 \\
\operatorname{Var}(X) \leq \mathbb{E}[X]
\end{gathered}
$$

Consequence:

Let $K \subseteq \mathbb{R}^{n}$ be a convex body. Denote by Z_{K}, the intrinsic volume random variable associated with K. Then,

$$
\begin{gathered}
\mathbb{P}\left(\left|Z_{K}-\mathbb{E}\left[Z_{K}\right]\right| \geq t \sqrt{n}\right) \leq 2 e^{-\frac{1}{2} t^{2}} \text { for all } 0 \leq t \leq \sqrt{n} \\
\operatorname{Var}\left[Z_{k}\right] \leq n
\end{gathered}
$$

This improves a result of Lotz, McCoy, Nourdin, Peccati \& Tropp 2019.

Extending localization to multiple constraints

Goal: Generalizing the localization of Marsiglietti \& Melbourne to multiple constraints.

Extending localization to multiple constraints

Goal: Generalizing the localization of Marsiglietti \& Melbourne to multiple constraints.

Set up:

Let $h_{1}, h_{2}, \ldots, h_{p}:[M, N] \rightarrow \mathbb{R}$ be arbitrary and $h=\left(h_{1}, h_{2}, \ldots, h_{p}\right)$. Consider,
$\mathcal{P}_{h}^{\gamma}([M, N])=\left\{\mathbb{P}_{X} \in \mathcal{P}([M, N]): \mathbf{X}\right.$ log-concave $\left.\gamma, \mathbb{E}[h(X)] \geq 0\right\}$

Extending localization to multiple constraints

Goal: Generalizing the localization of Marsiglietti \& Melbourne to multiple constraints.

Set up:

Let $h_{1}, h_{2}, \ldots, h_{p}:[M, N] \rightarrow \mathbb{R}$ be arbitrary and $h=\left(h_{1}, h_{2}, \ldots, h_{p}\right)$. Consider,
$\mathcal{P}_{h}^{\gamma}([M, N])=\left\{\mathbb{P}_{X} \in \mathcal{P}([M, N]):\right.$ X log-concave $\left.\gamma, \mathbb{E}[h(X)] \geq 0\right\}$

Question:

If $\mathbb{P}_{X} \in \operatorname{Conv}\left(\mathcal{P}_{h}^{\gamma}([M, N])\right)$ is an extreme point, then the PMF of \mathbb{P}_{X} ?

A generalized localization (ongoing work)

A generalized localization (ongoing work)

Theorem (Marsiglietti \& HA - 2022+, Nayar \& Slobodianiuk - 2022)

Let $\mathbb{P}_{X} \in \operatorname{conv}\left(\mathcal{P}_{h}^{\gamma}([[M, N]])\right)$ be an extreme point. Denote by V, the convex function such that e^{-V} is the PMF of \mathbb{P}_{X} with respect to the counting measure on \mathbb{Z}. Let $k=\#\left\{i \in\{1,2, \ldots, p\}: \mathbb{E}\left[h_{i}(X)\right]=0\right\}$ be the number of saturated constraints. Then, there exists k affine functions $\phi_{1}, \phi_{2}, \ldots, \phi_{k}$ on $\operatorname{supp}(V)$ such that $V=\max _{1 \leq i \leq k} \phi_{i}$.
(*)

A generalized localization (ongoing work)

Theorem (Marsiglietti \& HA - 2022+, Nayar \& Slobodianiuk - 2022)

Let $\mathbb{P}_{X} \in \operatorname{conv}\left(\mathcal{P}_{h}^{\gamma}([[M, N]])\right)$ be an extreme point. Denote by V, the convex function such that e^{-V} is the PMF of \mathbb{P}_{X} with respect to the counting measure on \mathbb{Z}. Let $k=\#\left\{i \in\{1,2, \ldots, p\}: \mathbb{E}\left[h_{i}(X)\right]=0\right\}$ be the number of saturated constraints. Then, there exists k affine functions $\phi_{1}, \phi_{2}, \ldots, \phi_{k}$ on $\operatorname{supp}(V)$ such that $V=\max _{1 \leq i \leq k} \phi_{i}$.
(*)

Corollary

Let $\Phi: \mathcal{P}_{h}([[M, N]]) \rightarrow \mathbb{R}$ be convex. Then,

$$
\sup _{\mathbb{P}_{X} \in \mathcal{P}_{h}([[M, N]])} \Phi\left(\mathbb{P}_{X}\right) \leq \sup _{\mathbb{P}_{X} \in \mathcal{F}_{h}([[M, N]])} \Phi\left(\mathbb{P}_{X}\right)
$$

where $\mathcal{F}_{h}([[M, N]])=\mathcal{P}_{h}([[M, N]]) \cap\left\{\mathbb{P}_{X}: X\right.$ with PMF as in $\left.\left(^{*}\right)\right\}$.

Proof techniques

Proof techniques

The main idea is to use the notion of degree of freedom of a log-concave function introduced by Fradelizi \& Guédon (2004).

Proof techniques

The main idea is to use the notion of degree of freedom of a log-concave function introduced by Fradelizi \& Guédon (2004).

Definition (Fradelizi \& Guédon - 2004)

Let $V: \mathbb{Z} \rightarrow \mathbb{R} \cup\{+\infty\}$ be convex and $D=\operatorname{dom}(V)$. Define the degree of freedom of e^{-V} as the largest k such that,

Proof techniques

The main idea is to use the notion of degree of freedom of a log-concave function introduced by Fradelizi \& Guédon (2004).

Definition (Fradelizi \& Guédon - 2004)

Let $V: \mathbb{Z} \rightarrow \mathbb{R} \cup\{+\infty\}$ be convex and $D=\operatorname{dom}(V)$. Define the degree of freedom of e^{-V} as the largest k such that, there exist $\alpha>0$ and linear independent bounded functions $W_{1}, W_{2}, \ldots W_{k}$ defined on D such that for all $\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{k} \in[-\alpha, \alpha]$, the function $e^{-V}\left(1+\sum_{i=1}^{k} \epsilon_{i} W_{i}\right)$ is discrete log-concave.

Proof techniques

The main idea is to use the notion of degree of freedom of a log-concave function introduced by Fradelizi \& Guédon (2004).

Definition (Fradelizi \& Guédon - 2004)

Let $V: \mathbb{Z} \rightarrow \mathbb{R} \cup\{+\infty\}$ be convex and $D=\operatorname{dom}(V)$. Define the degree of freedom of e^{-V} as the largest k such that, there exist $\alpha>0$ and linear independent bounded functions $W_{1}, W_{2}, \ldots W_{k}$ defined on D such that for all $\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{k} \in[-\alpha, \alpha]$, the function $e^{-V}\left(1+\sum_{i=1}^{k} \epsilon_{i} W_{i}\right)$ is discrete log-concave.

Geometrically, this is the largest k such that there is a

 k-dimensional cube around e^{-V} in the set of discrete log-concave functions.
Extension of a convex function in \mathbb{Z}

Extension of a convex function in \mathbb{Z}

Denote by \bar{V}, the convex extension of V obtained by extending V linearly on each $[[k, k+1]] \subset[[a, b]]$.

Extension of a convex function in \mathbb{Z}

Denote by \bar{V}, the convex extension of V obtained by extending V linearly on each $[[k, k+1]] \subset[[a, b]]$.

- \bar{V} is continuous on $[a, b]$.

Extension of a convex function in \mathbb{Z}

Denote by \bar{V}, the convex extension of V obtained by extending V linearly on each $[[k, k+1]] \subset[[a, b]]$.

- \bar{V} is continuous on $[a, b]$.
- \bar{V} is convex on $[a, b]$.

Extension of a convex function in \mathbb{Z}

Denote by \bar{V}, the convex extension of V obtained by extending V linearly on each $[[k, k+1]] \subset[[a, b]]$.

- \bar{V} is continuous on $[a, b]$.
- \bar{V} is convex on $[a, b]$.

$\Longrightarrow e^{-\bar{V}}$ is log-concave on $[a, b]$.

A key lemma

Lemma

Let $V:[[a, b]] \rightarrow \mathbb{R}$ be convex. Then, Deg. of freedom of $e^{-V}=$ Deg. of freedom of $e^{-\bar{V}}$

A key lemma

Lemma

Let $V:[[a, b]] \rightarrow \mathbb{R}$ be convex. Then,
Deg. of freedom of $e^{-V}=$ Deg. of freedom of $e^{-\bar{V}}$

Idea of the proof of theorem $\left({ }^{*}\right)$:

Using the Lemma and techniques developed by Fradelizi \& Guédon (2004), we can extend the results from \bar{V} to V.

Thank you! Any questions?

Sharp estimates of intersections of Orlicz balls

Yin-Ting Liao
joint work with Kavita Ramanan

Brown University

2022 Workshop in Convexity and High-Dimensional Probability

Intersections of ℓ_{p}^{n} balls - a phase transition result

For $p \in(0, \infty]$, define ℓ_{p}^{n} ball $B_{p}^{n}:=\left\{x \in \mathbb{R}^{n}: \sum_{i=1}^{n}\left|x_{i}\right|^{p} \leq n\right\}$.
Theorem (Schechtman and Schmuckenschläger, '91)
For $p \in(0, \infty]$ and $q \in(0, \infty]$, there exists $c_{p q}>0$ such that

$$
\frac{\left|B_{p}^{n} \cap t B_{q}^{n}\right|}{\left|B_{p}^{n}\right|} \rightarrow\left\{\begin{array}{lll}
0, & \text { if } t<c_{p q} \\
1, & \text { if } & t>c_{p q}
\end{array}\right.
$$

Intersections of ℓ_{p}^{n} balls - a phase transition result

For $p \in(0, \infty]$, define ℓ_{p}^{n} ball $B_{p}^{n}:=\left\{x \in \mathbb{R}^{n}: \sum_{i=1}^{n}\left|x_{i}\right|^{p} \leq n\right\}$.
Theorem (Schechtman and Schmuckenschläger, '91)
For $p \in(0, \infty]$ and $q \in(0, \infty]$, there exists $c_{p q}>0$ such that

$$
\frac{\left|B_{p}^{n} \cap t B_{q}^{n}\right|}{\left|B_{p}^{n}\right|} \rightarrow\left\{\begin{array}{lll}
0, & \text { if } t<c_{p q} \\
1, & \text { if } & t>c_{p q}
\end{array}\right.
$$

Probability theory comes into play -

$$
\frac{\left|B_{p}^{n} \cap t B_{q}^{n}\right|}{\left|B_{p}^{n}\right|}=\mathbb{P}\left(X^{(n, p)} \in t B_{q}^{n}\right)
$$

where $X^{(n, p)} \sim$ uniformly on B_{p}^{n}.

A useful representation by Schechtman and Zinn '90

- $U \sim$ Uniform $[0,1]$
- $\xi^{(n, p)}=\left(\xi_{1}, \ldots, \xi_{n}\right)$ where $\left\{\xi_{i}\right\}$ are i.i.d. and has density

$$
f_{p}(x):=\frac{1}{2 p^{1 / p} \Gamma(1+1 / p)} e^{-|x|^{p} / p}
$$

- Let $X^{(n, p)} \sim$ uniformly on $B_{p}^{n}:=\left\{x \in \mathbb{R}^{n}:\|x\|_{p}^{p} \leq n\right\}$. Then

$$
X^{(n, p)} \stackrel{(d)}{=} n^{1 / p} U^{1 / n} \frac{\xi^{(n, p)}}{\left\|\xi^{(n, p)}\right\|_{p}} .
$$

A useful representation by Schechtman and Zinn '90

- Let $X^{(n, p)} \sim$ uniformly on $B_{p}^{n}:=\left\{x \in \mathbb{R}^{n}:\|x\|_{p}^{p} \leq n\right\}$. Then

$$
\begin{gathered}
X^{(n, p)} \stackrel{(d)}{=} n^{1 / p} U^{1 / n} \frac{\xi^{(n, p)}}{\left\|\xi^{(n, p)}\right\|_{p}} . \\
\frac{\left|B_{p}^{n} \cap t B_{q}^{n}\right|}{\left|B_{p}^{n}\right|}=\mathbb{P}\left(X^{(n, p)} \in t B_{q}^{n}\right)=\mathbb{P}\left(U^{q / n} \frac{\frac{1}{n} \sum_{i=1}^{n}\left|\xi_{i}\right|^{q}}{\left(\frac{1}{n} \sum_{i=1}^{n}\left|\xi_{i}\right|^{p}\right)^{q / p}} \leq t^{q}\right)
\end{gathered}
$$

A useful representation by Schechtman and Zinn '90

- Let $X^{(n, p)} \sim$ uniformly on $B_{p}^{n}:=\left\{x \in \mathbb{R}^{n}:\|x\|_{p}^{p} \leq n\right\}$. Then

$$
\begin{gathered}
X^{(n, p)} \stackrel{(d)}{=} n^{1 / p} U^{1 / n} \frac{\xi^{(n, p)}}{\left\|\xi^{(n, p)}\right\|_{p}} . \\
\frac{\left|B_{p}^{n} \cap t B_{q}^{n}\right|}{\left|B_{p}^{n}\right|}=\mathbb{P}\left(X^{(n, p)} \in t B_{q}^{n}\right)=\mathbb{P}\left(U^{q / n} \frac{\frac{1}{n} \sum_{i=1}^{n}\left|\xi_{j}\right|^{q}}{\left(\frac{1}{n} \sum_{i=1}^{n}\left|\xi_{i}\right|^{p}\right)^{q / p}} \leq t^{q}\right)
\end{gathered}
$$

SLLN implies that there exists a constant $A_{p q}>0$ such that

$$
U^{q / n} \frac{\frac{1}{n} \sum_{i=1}^{n}\left|\xi_{i}\right|^{q}}{\left(\frac{1}{n} \sum_{i=1}^{n}\left|\xi_{i}\right|^{p}\right)^{q / p}} \rightarrow A_{p q} .
$$

The probability converges to 0 or 1 when $t<A_{p q}^{1 / q}$ or $t>A_{p q}^{1 / q}$, respectively.

A useful representation by Schechtman and Zinn '90

- Let $X^{(n, p)} \sim$ uniformly on $B_{p}^{n}:=\left\{x \in \mathbb{R}^{n}:\|x\|_{p}^{p} \leq n\right\}$. Then

$$
\begin{gathered}
X^{(n, p)} \stackrel{(d)}{=} n^{1 / p} U^{1 / n} \frac{\xi^{(n, p)}}{\left\|\xi^{(n, p)}\right\|_{p}} . \\
\frac{\left|B_{p}^{n} \cap t B_{q}^{n}\right|}{\left|B_{p}^{n}\right|}=\mathbb{P}\left(X^{(n, p)} \in t B_{q}^{n}\right)=\mathbb{P}\left(U^{q / n} \frac{\frac{1}{n} \sum_{i=1}^{n}\left|\xi_{j}\right|^{q}}{\left(\frac{1}{n} \sum_{i=1}^{n}\left|\xi_{i}\right|^{p}\right)^{q / p}} \leq t^{q}\right)
\end{gathered}
$$

SLLN implies that there exists a constant $A_{p q}>0$ such that

$$
U^{q / n} \frac{\frac{1}{n} \sum_{i=1}^{n}\left|\xi_{i}\right|^{q}}{\left(\frac{1}{n} \sum_{i=1}^{n}\left|\xi_{i}\right|^{p}\right)^{q / p}} \rightarrow A_{p q} .
$$

The probability converges to 0 or 1 when $t<A_{p q}^{1 / q}$ or $t>A_{p q}^{1 / q}$, respectively.
Question: What if $t=A_{p q}^{1 / q}$?

After a decade...

Theorem (Schmuckenschläger, '01)

For $p \in(0, \infty], q \in(0, \infty]$ and $p \neq q$, if $t=c_{p q}$ then

$$
\frac{\left|B_{p}^{n} \cap t B_{q}^{n}\right|}{\left|B_{p}^{n}\right|} \rightarrow \frac{1}{2}
$$

CLT instead of SLLN to understand $\mathbb{P}\left(U^{q / n} \frac{\left.\frac{1}{n} \sum_{i=1}^{n} 1 \xi_{i}\right|^{q}}{\left(\left.\frac{1}{n} \sum_{i=1}^{n} \xi_{i}\right|^{q}\right)^{q / p}} \leq t^{q}\right)$.

After a decade...

Theorem (Schmuckenschläger, '01)

For $p \in(0, \infty], q \in(0, \infty]$ and $p \neq q$, if $t=c_{p q}$ then

$$
\frac{\left|B_{p}^{n} \cap t B_{q}^{n}\right|}{\left|B_{p}^{n}\right|} \rightarrow \frac{1}{2}
$$

CLT instead of SLLN to understand $\mathbb{P}\left(U^{q / n} \frac{\frac{1}{n} \sum_{i=1}^{n}\left|\xi_{i}\right|^{q}}{\left(\frac{1}{n} \sum_{i=1}^{n}\left|\xi_{i}\right|^{q}\right)^{q / p}} \leq t^{q}\right)$.

Can we extend the results to more general convex bodies?

Beyond ℓ_{p}^{n} balls - Orlicz balls

Definition

We say V is an Orlicz function if $V: \mathbb{R} \rightarrow \mathbb{R}_{+}$is convex and satisfies $V(0)=0$ and $V(x)=V(-x)$ for $x \in \mathbb{R}$.

Define the associated symmetric Orlicz ball by

$$
B_{V}^{n}\left(R_{1}\right):=\left\{x \in \mathbb{R}^{n}: \sum_{i=1}^{n} V\left(x_{i}\right) \leq n R_{1}\right\} .
$$

Remark: When $V(x)=|x|^{p}, B_{V}^{n}$ is indeed the ℓ_{p}^{n} ball of radius $n^{1 / p}$. However, Orlicz ball does not admit a nice probabilistic representation like ℓ_{p}^{n} balls.

Beyond ℓ_{p}^{n} balls - Orlicz balls

Definition

We say V is an Orlicz function if $V: \mathbb{R} \rightarrow \mathbb{R}_{+}$is convex and satisfies $V(0)=0$ and $V(x)=V(-x)$ for $x \in \mathbb{R}$.

Define the associated symmetric Orlicz ball by

$$
B_{V}^{n}\left(R_{1}\right):=\left\{x \in \mathbb{R}^{n}: \sum_{i=1}^{n} V\left(x_{i}\right) \leq n R_{1}\right\} .
$$

Remark: When $V(x)=|x|^{p}, B_{V}^{n}$ is indeed the ℓ_{p}^{n} ball of radius $n^{1 / p}$. However, Orlicz ball does not admit a nice probabilistic representation like ℓ_{p}^{n} balls.

- LDP for norms of random vectors uniformly distributed on Orlicz balls (Kim, L- and Ramana '20)
- Sharp volume estimates (Kabluchko and Prochno '20, L- and Ramanan '20)

$$
\left|B_{V}^{n}\left(R_{1}\right)\right|=\frac{1}{\sigma_{R_{1}} \tau_{R_{1}} \sqrt{2 \pi n}} e^{-n \inf _{x} \mathcal{J}\left(R_{1}, x\right)}(1+o(1))
$$

Almost two decades after Schmuckenschäger...

Theorem (Kabluchko and Prochno '20)

Let V_{1} and V_{2} be Orlicz functions. Fix $R_{1}>0$. There exists an explicit constant $c_{R_{1}}:=c_{V_{1}, V_{2}, R_{1}}>0$ such that as $n \rightarrow \infty$

$$
\frac{\left|B_{V_{1}}^{n}\left(R_{1}\right) \cap B_{V_{2}}^{n}\left(R_{2}\right)\right|}{\left|B_{V_{1}}^{n}\left(R_{1}\right)\right|} \rightarrow\left\{\begin{array}{lll}
0, & \text { if } & c_{R_{1}}>R_{2} \\
1, & \text { if } & c_{R_{1}}<R_{2}
\end{array}\right.
$$

The proof relies on the SLLN and a large deviation tilting measure.

Almost two decades after Schmuckenschäger...

Theorem (Kabluchko and Prochno '20)

Let V_{1} and V_{2} be Orlicz functions. Fix $R_{1}>0$. There exists an explicit constant $c_{R_{1}}:=c_{V_{1}, V_{2}, R_{1}}>0$ such that as $n \rightarrow \infty$

$$
\frac{\left|B_{V_{1}}^{n}\left(R_{1}\right) \cap B_{V_{2}}^{n}\left(R_{2}\right)\right|}{\left|B_{V_{1}}^{n}\left(R_{1}\right)\right|} \rightarrow\left\{\begin{array}{lll}
0, & \text { if } & c_{R_{1}}>R_{2} \\
1, & \text { if } & c_{R_{1}}<R_{2}
\end{array}\right.
$$

The proof relies on the SLLN and a large deviation tilting measure.
Critical case when $R_{2}=c_{R_{1}}$?

Less than a year!

Theorem (L- and Ramanan '21)

Under suitable conditions on Orlicz functions V_{1} and V_{2}. At the critical value when $R_{2}=c_{R_{1}}$,

$$
\frac{\left|B_{V_{1}}^{n}\left(R_{1}\right) \cap B_{V_{2}}^{n}\left(R_{2}\right)\right|}{\left|B_{V_{1}}^{n}\left(R_{1}\right)\right|} \rightarrow \frac{1}{2} .
$$

Remark: A sufficient condition: $V_{1}^{\prime}(x) / V_{2}^{\prime}(x)$ is strictly increasing in \mathbb{R}_{+} and tends to infinity as $x \rightarrow \infty$.

Less than a year!

Theorem (L- and Ramanan '21)

Under suitable conditions on Orlicz functions V_{1} and V_{2}. At the critical value when $R_{2}=c_{R_{1}}$,

$$
\frac{\left|B_{V_{1}}^{n}\left(R_{1}\right) \cap B_{V_{2}}^{n}\left(R_{2}\right)\right|}{\left|B_{V_{1}}^{n}\left(R_{1}\right)\right|} \rightarrow \frac{1}{2} .
$$

Remark: A sufficient condition: $V_{1}^{\prime}(x) / V_{2}^{\prime}(x)$ is strictly increasing in \mathbb{R}_{+} and tends to infinity as $x \rightarrow \infty$.

Theorem (L- and Ramanan '21)

At the critical case, we have

$$
\left|B_{V_{1}}^{n}\left(R_{1}\right) \cap B_{V_{2}}^{n}\left(R_{2}\right)\right|=\frac{C_{R_{1}, R_{2}}}{\tau_{R_{1}} \sqrt{2 \pi n}} e^{-n \mathcal{J}\left(R_{1}, R_{2}\right)}(1+o(1))
$$

The sharp large deviation estimate relies on quantitative CLTs under the large deviation tilting measures.

Summary

- While SLLN and CLT type results have been used for several decades, only very recently have large deviations methods been introduced in asymptotic convex geometry
- Our work is amongst the first to use sharp large deviations estimates in asymptotic convex geometry - which requires a combination of tools from probability theory and Fourier analysis
- Sharp large deviation estimates are more broadly useful in high-dimensional probability/statistics

Small Ball Probabilities for Simple Random Tensors

Xuehan Hu
Texas A\&M University

based on joint work with Grigoris Paouris

May 27, 2022

Workshop in Convexity and High-Dimensional Probability, Atlanta

Setting

Suppose $X^{(i)}=\left(X_{1}^{(i)}, \cdots, X_{n_{i}}^{(i)}\right), 1 \leq i \leq l$ are random vectors in $\mathbb{R}^{n_{i}}$. Define the simple random tensor

$$
X:=X^{(1)} \otimes \cdots \otimes X^{(l)}=\left(X_{i_{1}}^{(1)} \cdots X_{i_{l}}^{(l)}\right)_{i_{1} \cdots i_{l}} .
$$

Let F be an m-dimensional subspace in $\mathbb{R}^{n_{1} \times \cdots \times n_{l}}$ and let f^{1}, \cdots, f^{m} be an orthonormal basis for F. Denote by $\mathbf{P}_{F} X^{(1)} \otimes \cdots \otimes X^{(l)}$ the orthogonal projection of $X^{(1)} \otimes \cdots \otimes X^{(l)}$ onto F. Then by definition we have

$$
\left\|\mathbf{P}_{F} X^{(1)} \otimes \cdots \otimes X^{(l)}\right\|_{2}^{2}=\sum_{k=1}^{m}\left|\left\langle X^{(1)} \otimes \cdots \otimes X^{(l)}, f^{k}\right\rangle\right|^{2}
$$

Motivation

Definition

Every tensor order-l X can be expressed as a sum of order l simple tensors,

$$
X=\sum_{u \in \mathcal{U}} X(u)^{(1)} \otimes \cdots \otimes X(u)^{(l)} .
$$

The rank of a tensor T is the minimum number of $|\mathcal{U}|$.

The initial motivation is to retrieve $X(u)^{(j)}$'s from a given tensor of fixed rank.
Bhaskara, Charikar, Moitra, Vijayaraghavan designed the smoothed analysis model that can recover $X(u)^{(j)}$'s with high probability if all the simple tensors $X(u)^{(1)} \otimes \cdots \otimes X(u)^{(l)}$ are robustly linearly independent. It suffices to prove that for any subspace $F \subset \mathbb{R}^{n^{l}}$ of given dimension $m, \mathbf{P}_{F} X(u)^{(1)} \otimes \cdots \otimes X(u)^{(l)}$ has small ball property.

Main result

Theorem

Let $X^{(j)} \in \mathbb{R}^{n_{j}}, 1 \leq j \leq l$ be independent random vectors with independent coordinates whose densities have uniform norms bounded by 1 . Suppose F is a subspace in $\mathbb{R}^{n_{1} \times \cdots \times n_{l}}$ with dimension m and suppose $z_{j} \in \mathbb{R}^{n_{j}}, 1 \leq j \leq l$ are arbitrary vectors, then for $0<\epsilon<1$

$$
\mathbb{P}\left(\left\|\mathbf{P}_{F} \otimes_{j=1}^{l}\left(X^{(j)}-z_{j}\right)\right\|_{2} \leq \epsilon \sqrt{m}\right) \leq m \epsilon\left(C \log \frac{1}{\epsilon}\right)^{l-1}
$$

Examples

In general, this upper bound cannot be improved in terms of ϵ. In fact, let $X^{(j)} \in \mathbb{R}^{n}$ be independent uniform distributions on $[-\sqrt{3}, \sqrt{3}]^{n}, 1 \leq j \leq l$. Choose unit vector $f \in \mathbb{R}^{n^{l}}$ such that

$$
f_{i_{1} \cdots i_{l}}=\left\{\begin{array}{cc}
1 & \text { if } i_{1}=\cdots=i_{l} \\
0 & \text { otherwise }
\end{array}\right.
$$

Then for $0<\epsilon<1$,

$$
\mathbb{P}\left[\left|\left\langle X^{(1)} \otimes \cdots \otimes X^{(l)}, f\right\rangle\right| \leq \epsilon\right]=\frac{\epsilon}{\sqrt{3}} \sum_{j=0}^{l-1} \frac{\left(\log \frac{\sqrt{3}}{\epsilon}\right)^{j}}{j!} \geq \frac{C}{(l-1)!} \epsilon\left(\log \frac{1}{\epsilon}\right)^{l-1} .
$$

In fact, we can construct subspace F of dimension $m, \quad 1 \leq m \leq n$, such that

$$
\mathbb{P}\left(\left\|\mathbf{P}_{F} X^{(1)} \otimes \cdots \otimes X^{(l)}\right\|_{2} \leq \epsilon \sqrt{m}\right) \geq \frac{C \sqrt{m}}{(l-2)!} \epsilon\left(\log \frac{1}{\epsilon}\right)^{l-2}
$$

The behavior of $\left\|\mathbf{P}_{F} X^{(1)} \otimes \cdots \otimes X^{(l)}\right\|_{2}$ depends on the choice of the subspace F.

Main Result

Definition

A random vector in \mathbb{R}^{n} is log-concave if its density f is log concave, i.e. for $x, y \in \mathbb{R}^{n}$ and $\theta \in(0,1)$, we have

$$
f(\theta x+(1-\theta) y) \geq f(x)^{\theta} f(y)^{1-\theta} .
$$

Definition

A random vector in $X \in \mathbb{R}^{n}$ is isotropic if

$$
\mathbb{E} X X^{T}=I d
$$

Main result

Theorem

Let $X^{(j)} \in \mathbb{R}^{n_{j}}, 1 \leq j \leq l$ be independent isotropic log-concave random vectors. Suppose F is a subspace in $\mathbb{R}^{n_{1} \times \cdots \times n_{l}}$ with dimension m and suppose f^{1}, \cdots, f^{m} is an orthonormal basis of F. Then for $0<\epsilon<1$

$$
\mathbb{P}\left(\left|\left\langle X^{(1)} \otimes \cdots \otimes X^{(l)}, f^{k}\right\rangle\right| \leq \epsilon\right) \leq \epsilon\left(C \log \frac{1}{\epsilon}\right)^{l-1}
$$

and thus

$$
\mathbb{P}\left(\left\|\mathbf{P}_{F} X^{(1)} \otimes \cdots \otimes X^{(l)}\right\|_{2} \leq \epsilon \sqrt{m}\right) \leq m \epsilon\left(C \log \frac{1}{\epsilon}\right)^{l-1}
$$

Remark

$$
\mathbb{E}\left\|\mathbf{P}_{F} X^{(1)} \otimes \cdots \otimes X^{(l)}\right\|_{2}^{2}=m
$$

Related Result

Carbery-Wright inequality can lead to a small ball property of simple tensors where the component vectors are log-concave.

Vershynin gives concentration inequalities of orthogonal projection of simple tensors where the component vectors are subgaussian.

Bhaskara, Charikar, Moitra, Vijayaraghavan give small ball property of orthogonal projection of simple tensors where the component vectors are Gaussian.

Anari, Daskalakis, Maass, Papadimitriou, Saberi, Vempala give small ball property of orthogonal projection of simple tensors where the component vectors are drawn from (δ, p)-nondeterministic distribution.

Glazer and Mikulincer give small ball property of any polynomial function of log-concave product measure.

Thank You!

On the L^{p} Aleksandrov problem for negative p

Stephanie Mui

NYU Courant

stephanie.s.mui@nyu.edu

Integral Curvature

- The integral curvature of $K \in \mathcal{K}_{0}^{n}$:

$$
J(K, \omega)=\mathcal{H}^{n-1}\left(\alpha_{K}(\omega)\right)
$$

for every Borel $\omega \subset S^{n-1}$ (Aleksandrov 1942)

- Radial Gauss map $\boldsymbol{\alpha}_{K}(\omega)$ maps radial vectors to normal vectors
- Measure of the normal cone of the radial projection to ∂K

Integral Curvature for a Polygon

Classical Aleksandrov Problem

Problem (Aleksandrov 1942)

What are the necessary and sufficient conditions on a Borel measure μ on S^{n-1} so that

$$
J(K, \cdot)=\mu
$$

for some $K \in \mathcal{K}_{o}^{n}$?

- Classical Aleksandrov problem is a type of Minkowski problem
- Contrast with classical Minkowski problem:

$$
S_{K}(\cdot)=\mu
$$

L^{p} Brunn-Minkowski Theory

- (Firey 1962) For every $p \geq 1, K, L \in \mathcal{K}_{o}^{n}$, and $a, b \geq 0$, define

$$
h_{a K}^{t_{p} b L}=\left(a \cdot h_{K}^{p}+b \cdot h_{L}^{p}\right)^{\frac{1}{p}}
$$

- Generalized $\forall p \in \mathbb{R}$,

$$
a \cdot K+_{p} b \cdot L=\left[\left(a \cdot h_{K}^{p}+b \cdot h_{L}^{p}\right)^{\frac{1}{p}}\right]
$$

- Actively researched when (Lutwak 1993) discovered the concept of the L^{p} surface area measure
- For each $K, L \in \mathcal{K}_{o}^{n}$, defined by variational formula

$$
\left.\frac{d}{d t} V\left(K t_{p} t \cdot L\right)\right|_{t=0}=\frac{1}{p} \int_{S^{n-1}} h_{L}(u)^{p} d S_{p}(K, u)
$$

L^{p} Integral Curvature

- $p \in \mathbb{R}$ and $a, b \geq 0$, define L^{p} harmonic combination

$$
a \cdot K \hat{t}_{p} b \cdot L=\left(a \cdot K^{*} t_{p} b \cdot L^{*}\right)^{*}
$$

- (Huang-LYZ 2018, JDG) defined the L^{p} integral curvature by variational formula for each $K, L \in \mathcal{K}_{o}^{n}$:

$$
\left.\frac{d}{d t} \mathcal{E}\left(K \hat{+}_{p} t \cdot L\right)\right|_{t=0}= \begin{cases}\frac{1}{p} \int_{S^{n-1}} \rho_{L}(u)^{-p} d J_{p}(K, u) & , \text { for } p \neq 0 \\ -\int_{S^{n-1}} \log \left(\rho_{L}(u)\right) d J(K, u) & , \text { for } p=0\end{cases}
$$

where the entropy is

$$
\mathcal{E}(K)=-\int_{S^{n-1}} \log h_{K}(v) d v
$$

- Relationship to classical integral curvature

$$
d J_{p}(K, \cdot)=\rho_{K}^{p} d J(K, \cdot)
$$

L^{p} Aleksandrov Problem

Problem

Fix $p \in \mathbb{R}$. What are the necessary and sufficient conditions on a given Borel measure μ on S^{n-1} so that there exists a convex body $K \in \mathcal{K}_{o}^{n}$ with

$$
J_{p}(K, \cdot)=\mu ?
$$

- If μ has density f, equivalent to PDE

$$
\operatorname{det}\left(\nabla_{i j}^{2} h+h \delta_{i j}\right)=\frac{\left(|\nabla h|^{2}+h^{2}\right)^{\frac{n}{2}}}{h^{1-p}} f
$$

L^{P} Aleksandrov Problem Results

- (Huang-LYZ 2018) completely solved existence for $p>0$
- (Huang-LYZ 2018) solved existence under some strong conditions when $p<0$
- Measure is even and vanishes on all great subspheres
- Excludes many shapes, including polytopes
- (Zhao 2019, Proc. AMS) addressed this polytope gap
- $-1<p<0$
- Measure is even and discrete

Recent Progress for $p<0$ Case (M. 2021)

- Completely solve the symmetric case for $-1<p<0$

Theorem

μ is even and $-1<p<0$. Then $\exists K \in \mathcal{K}_{e}^{n}$ s.t. $J_{p}(K, \cdot)=\mu$ iff μ is not completely concentrated on lower dimensional subspace.

- A sufficient measure concentration condition for the symmetric case and $p \leq-1$

Theorem

$p \leq-1, \mu$ is even and satisfies

$$
\frac{\mu(\xi)}{\mu\left(S^{n-1}\right)} \leq C(n)^{p}
$$

for all great subspheres $\xi \subset S^{n-1}$, where
$C(n)=\exp \left[\frac{1}{2}\left(\psi\left(\frac{n}{2}\right)-\psi\left(\frac{1}{2}\right)\right)\right]$. Then $\exists K \in \mathcal{K}_{e}^{n}$ s.t. $J_{p}(K, \cdot)=\mu$.

End

Thanks for listening!

