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Lp-Borell-Brascamp-Lieb inequality

Lp coe�cients: Cp,�,t := (1� t)
1

p (1� �)
1

q ,Dp,�,t := t
1

p �
1

q for t,� 2 [0, 1] where
1/p + 1/q = 1.

Lp-Borell-Brascamp-Lieb inequality (M. Roysdon and S. Xing, 2021)

Let p � 1, �1 < s < 1, t 2 (0, 1) and f , g , h : Rn ! R+ be a triple of bounded
integrable functions satisfying the condition

h (Cp,�,tx + Dp,�,ty) � [Cp,�,t f (x)
s + Dp,�,tg(y)

s ]
1

s

for every x 2 supp(f ), y 2 supp(g) and every � 2 [0, 1]. Then

Z
h �

8
<

:

�
(1� t)(

R
f )p� + t(

R
g)p�

� 1

p� , if s � � 1

n
,

min
n
[Cp,�,t ]

1

�
R
f , [Dp,�,t ]

1

�
R
g

⌘
, if s < � 1

n
,

for 0  �  1, and � = s

1+ns
.

I p = 1, s � � 1

n
: the classical BBL inequality.

I p = 1, s < � 1

n
: the case solved by S. Dancs and B. Uhrin, JMAA, 1980.
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Lp,s supremal convolution

M. Roysdon and S. Xing (Trans. Amer. Math. Soc., 2021)

For f , g : Rn ! R+, s 2 (�1,1) and p � 1, we define the Lp,s supremal
convolution of f and g as

[(1� t) ·p,s f �p,s t ·p,s g ](z) = sup
0�1

sup
z=Cp,�,t x+Dp,�,t y

(Cp,�,t f (x)
s + Dp,�,tg(y)

s)1/s

where 1/p + 1/q = 1.

Z
(1� t) ·p,s f �p,s t ·p,s g �

8
<

:

�
(1� t)(

R
f )p� + t(

R
g)p�

� 1

p� , if s � � 1

n
,

min
n
[Cp,�,t ]

1

�
R
f , [Dp,�,t ]

1

�
R
g

⌘
, if s < � 1

n
.

G 0 < p < 1: we define Lp,s inf-supremal convolution of f and g replacing
sup

0�1
by inf0�1.

G p = 1: the classic supremal convolution operation for functions.

G K , L are convex bodies: (1� t) ·p,s �K �p,s t ·p,s �L = �(1�t)·pK+pt·pL where
(1� t) ·p K +p t ·p L means the Lp Minkowski summation.
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The Lp,s Asplund summation for p � 1

G Given ↵,� � 0 and convex functions u, v on Rn, the Lp addition of u, v

[(↵⇥p u)�p (� ⇥p v)](x) := {(↵(u⇤(x))p + �(v⇤(x))p)1/p}⇤,

where the Legendre transform for u is defined as

u
⇤(x) = sup

y2Rn

[hx , yi � u(y)].

The Lp,s Asplund summation for s-concave functions

For p � 1, s 2 (�1,1), given s-concave functions f (x) = (1� su(x))
1

s

+ and

g(x) = (1� sv(x))
1

s

+, we define the Lp,s Asplund summation with weights
↵,� � 0 as

(↵ ·p,s f ) ?p,s (� ·p,s g) :=
⇣
1� s

⇥
(↵⇥p u)�p (� ⇥p v)

⇤⌘ 1

s

+

.

G s = 0: Asplund summations for log-concave functions by N, Fang, S. Xing
and D. Ye, CVPDE, 2020.
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Quermassintegral for functions

F Projection function
�
fH

�
(z) := sup

y2H?
f (z + y).

Quermassintegral of functions

For a non-negative function f on Rn and j 2 {0, · · · , n � 1}, the j-th
quermassintegral of f is defined as

Wj(f ) := cn,j

Z

Gn,n�j

Z

H

fH(x)dx d⌫n,n�j(H).

G Wj(f ) =
1R

0

Wj({x 2 Rn : f (x) � t})dt.

G f = �K : Wj(f ) = Wj(K ), the quermassintegral for convex body K .

G ↵ 2 [�1, 1

n�j
], � 2 [�↵,1), ↵-concave functions f , g , and p � 1 :

Wj((1� t)⇥p,↵ f �p,↵ t ⇥p,↵ g) � [(1� t)Wj(f )� + tWj(g)� ]1/� , � = p↵�
↵+� .
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Lp,s mixed quermassintegral

Variation formula of quermassintegral (M. Roysdon and S. Xing, 2021)

We define Lp,s mixed quermassintegral for s-concave functions f = (1� su)1/s+ ,

g = (1� sv)1/s+ and ' = u
⇤,  = v

⇤ as

W
s

p,j(f , g) :=
1

n � j
lim
"!0

Wj(f ?p,s " ·p,s g)�Wj(f )

"

=
1

n � j

Z

Rn

[1� suH(x)]
1

s
�1

+  H(ruH(x))p

kxkj 'H(ruH(x))
1�p

dx .

F s = 0: W 0

p,j(f , g) =
1

n�j

R
Rn

e
�u

H
(x) H (ruH (x))

p'H (ruH (x))
1�p

kxkj dx .

F j = 0, s = 0:
(i) 0 < p < 1: L. Rotem; p � 1: N. Fang, S. Xing and D. Ye.
(ii) f (x) = �K , g = �L for convex bodies K , L:

W
1

p,0(f , g) = Vp(K , L) =
1

n

Z

Sn�1

h
p

L
(u)h1�p

K
dS(K , u).

Thank you very much!!!
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Problems in Directional Discrepancy

at the Workshop in Convexity and Probability, GA Tech
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Discrepancy notation
Point set P ™ [0, 1)

d
: |P| = N

Class of subsets of [0, 1)
d
: A

Definition (Local discrepancy)

D(P, A) =

---N · vol(A) ≠ |P fl A|
---

Definition (LŒ-discrepancy of P wrt A)

D(P, A) = sup
AœA

D(P, A)

Definition (LŒ-discrepancy wrt A)

D(N, A) = inf
Pœ[0,1)d

|P|=N

D(P, A)
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Directional discrepancy in two dimensions

If � µ [0, fi
2 ) is a set of “allowed” directions, let

R� =

Ó
R fl [0, 1]

2
:

R is a rectangle making angle ◊
with the x-axis, where ◊œ�

Ô
.

Two extreme cases:
When � is a singleton, say � = {0} (the very well-studied class of

axis-parallel rectangles), we get logarithmic discrepancy:

D(N, R{0}) ¥ log N (Roth, Schmidt, Halasz, van der Corput)

And, for all rotations Rall = R[0, fi
2 ) we have polynomial discrepancy:

N1/4 . D(N, Rall) . N1/4Ô
log N (Beck)

Question: What happens “in between” these extremes?
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Lower bounds
All rotations: Let PN be an N-point set and S(q, r , v) a square with

center q, sidelength r , and angle ‹. If µ = N⁄ ≠
q

pi œPN ”(p ≠ pi), we have

⁄

R2
D(PN , S(q, r , ‹))

2dq =

⁄

R2
|‰1r ,‹(›)|2
¸ ˚˙ ˝

shape
component

· |‚µ(›)|2
¸ ˚˙ ˝

point
component

d›.

In the proof we exploit the decay estimate aver ave‹ |‰1r ,‹(›)|2 & R
|›|3 .

Restricted Intervals: Suppose now that � is a smaller interval.

Issue: decay estimate now only holds for › in a sector of R2
and since the

behavior of ‚µ is entirely dependent on the point set, it is unclear whether

⁄

R2
D(PN , S(q, r , ‹))

2 ?¥
⁄

sector
|‰1r ,‹(›)|2|‚µ(›)|2d›.
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Related problem: particular classes of convex sets

Let C be a convex body. Given a unit vector � = (cos ◊, sin ◊),

the length of the interval

“�(”) =

Ó
x œ C : x ·� = inf

yœC
(y ·�)+”

Ô

measures smoothness and convexity

of ˆC in the direction �.

For any convex set, |“�(”)| & ”

For sets with C2
boundary e.g. discs, |“�(”)| & ”1/2

.

L. Brandolini and G. Travaglini (2021): obtained discrepancy lower bounds

for classes of translations and dilations of a convex body with certain

smoothness properties: namely that have |“�(”)| & ”1/2
on some interval.

M. Mastrianni (University of Minnesota) Directional Discrepancy May 27, 2022 5 / 8



Back to rotated rectangles setting

Theorem (Bilyk, M., 2021)
If � = (≠◊, ◊) for some ◊ < fi

4 , then D(N, R�) & N1/5.

Proof outline (uses ideas from BT paper)

Use decay estimates for shape

component: & |›|≠3
for › in

sector; & |›|≠4
for › outside

Approximate the sector by

suitably many rotated rectangles

For m œ Z2
, let �(m) be the number of rectangles m lies in

Find fl (depending on N) such that fl�(m) . the decay estimates.

Use estimates for exponential sums (capturing point component µ̂)

over integer lattice points in rectangles centered at the origin.
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Extension to Cantor sets of rotations
In recent work, using similar methods, we have obtained a lower bound for

the case where the allowed rotations are given by Cantor sets.

Theorem (Bilyk, M., 2022)
Let 0 < ⁄ < 1

2 and let I1,1 and I1,2 be the intervals [0, ⁄] and [1 ≠ ⁄, 1]

respectively. We iteratively remove intervals: if at step k ≠ 1 we have
defined intervals Ik≠1,1, Ik≠1,2, · · · , Ik≠1,2k≠1 , then we define
Ik,1, Ik,2, · · · , Ik,2k by deleting from each Ik≠1,j an interval of length
(1 ≠ 2⁄)⁄k≠1. If we let the resulting Cantor set be defined as

C(⁄) =

Œ‹

k=0

2k€

j=1
Ik,j ,

then we have
D(N, RC(⁄)) & N1/(7≠2”(⁄)),

where ”(⁄) = log(2)/ log(1/⁄) is the Hausdor� dimension of C(⁄).
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Moments of Gaussian quadratic forms with values in

Banach space.
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Motivation

Theorem (Classical Hanson-Wright inequality)

Let (Xi)iœN be independent, –-subgaussian r.v’s and A = (aij) be a

real-values matrix. Then

P(|
ÿ

ij
aij(XiXj ≠ EXiXj)| Ø t) Æ 2e

≠ min
3

t2
C–4

q
ij a2

ij
, t

C–2ÎAÎ¸2æ¸2

4

.

Natural questions:

P(sup
k

|
ÿ

ij
a

k
ij(XiXj ≠ EXiXj)| Ø t) Æ?

P( q

Ûÿ

k
|
ÿ

ij
ak

ij(XiXj ≠ EXiXj)|q Ø t) Æ?

P(Î
ÿ

ij
bij(XiXj ≠ EXiXj)Î Ø t) Æ?

where bij œ (F , Î·Î) (normed space).
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From moments to tails

Let (F , Î·Î) be a normed space and A = (aij) be an F -valued matrix.
Standard argument gives

P(Î
ÿ

ij
aij(XiXj ≠ EXiXj)Î Ø t) Æ C(–)P(Î

ÿ

ij
aij(gigj ≠ ”i=j)Î Ø c(–)t)

The latter can be estimated by Markov inequality:

P(Î
ÿ

ij
aij(gigj ≠ ”i=j)Î Ø t) Æ infp

Q

a
p
Ò
EÎ

q
ij aij(gigj ≠ ”i=j)Îp

tp

R

b
p

It can be shown that the above is optimal (two-sided) using
Paley-Zygmund inequality.

Problem

p

Û
EÎ

ÿ

ij
aij(gigj ≠ ”i=j)Îp ¥??
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Known results

Theorem (Borell, Arcones, Giné, Ledoux, Talagrand)

Let (F , Î·Î) be a Banach space and A be a symmetric, F -valued matrix.

Then p

Û
EÎ

ÿ

ij
aij(gigj ≠ ”ij)Îp ¥

¥ EÎ
ÿ

ij
aij(gigj ≠ ”ij)Î + Ô

pE sup
xœBn

2

Î
ÿ

ij
aijgixjÎ + p sup

x ,yœBn
2

Î
ÿ

ij
aijxiyjÎ.

Example (F = ¸q)

E sup
xœBn

2

Î
ÿ

ij
aijgixjÎ¸q = E sup

xœBn
2

q

Ûÿ

k
|ak

ijgixj |q
q=2= E sup

x ,yœBn
2

ÿ

ijk
a

k
ijgixjyk

The latter expression was estimated by R. Lata≥a in 2006.
Goal: replace problematic term by sup

xœBn
2

EÎ
ÿ

ij
aijgixjÎ
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New results

Theorem (R. Adamczak, R. Lata≥a, R. Meller)

Under the assumption of the previous theorem we have
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Advantages: sup outside the E, holds in any Banach space.

Also the red term is not so di�cult to estimate.

Small disadvantages: new yellow term
Disadvantages: not two sided because of red term (take (Mn◊n(R), Î·Îú),
where ÎAÎú = sup

ÎTÎop=1,TœMn◊n

ÿ
aijtij .)
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Case of Lq spaces.

The previous inequality can be reversed if (F , Î·Î) satisfies

For any F-valued matrix A æ EÎ
ÿ

i ”=j
aijgijÎ Æ C(F )Î

ÿ

ij
aij(gigj ≠ ”ij)Î

The above hold in Lq space, type 2 spaces. For Banach Lattices it is
equivalent to finite cotype (in general finite cotype is not enough).

Theorem (R. Adamczak, R. Lata≥a, R. Meller)

In Lq spaces the following is true

(no E on the RHS! deterministic bound)

p

Û
Î
ÿ

ij
aij(gigj ≠ ”ij)Îp

Lq ≥q Î
Ûÿ

ij
a2

ijÎLq + Ô
p sup

xœBn2
2

Î
ÿ

ij
aijxijÎLq

+ Ô
p sup

xœBn
2

Î

ı̂ııÙ
ÿ

i

Q

a
ÿ

j
aijxj

R

b
2

ÎLq + p sup
x ,yœBn

2

Î
ÿ

ij
aijxiyjÎLq .



Case of Lq spaces.

The previous inequality can be reversed if (F , Î·Î) satisfies

For any F-valued matrix A æ EÎ
ÿ

i ”=j
aijgijÎ Æ C(F )Î

ÿ

ij
aij(gigj ≠ ”ij)Î

The above hold in Lq space, type 2 spaces. For Banach Lattices it is
equivalent to finite cotype (in general finite cotype is not enough).

Theorem (R. Adamczak, R. Lata≥a, R. Meller)

In Lq spaces the following is true

(no E on the RHS! deterministic bound)

p

Û
Î
ÿ

ij
aij(gigj ≠ ”ij)Îp

Lq ≥q Î
Ûÿ

ij
a2

ijÎLq + Ô
p sup

xœBn2
2

Î
ÿ

ij
aijxijÎLq

+ Ô
p sup

xœBn
2

Î

ı̂ııÙ
ÿ

i

Q

a
ÿ

j
aijxj

R

b
2

ÎLq + p sup
x ,yœBn

2

Î
ÿ

ij
aijxiyjÎLq .



Case of Lq spaces.

The previous inequality can be reversed if (F , Î·Î) satisfies

For any F-valued matrix A æ EÎ
ÿ

i ”=j
aijgijÎ Æ C(F )Î

ÿ

ij
aij(gigj ≠ ”ij)Î

The above hold in Lq space, type 2 spaces. For Banach Lattices it is
equivalent to finite cotype (in general finite cotype is not enough).

Theorem (R. Adamczak, R. Lata≥a, R. Meller)

In Lq spaces the following is true

(no E on the RHS! deterministic bound)

p

Û
Î
ÿ

ij
aij(gigj ≠ ”ij)Îp

Lq ≥q Î
Ûÿ

ij
a2

ijÎLq + Ô
p sup

xœBn2
2

Î
ÿ

ij
aijxijÎLq

+ Ô
p sup

xœBn
2

Î

ı̂ııÙ
ÿ

i

Q

a
ÿ

j
aijxj

R

b
2

ÎLq + p sup
x ,yœBn

2

Î
ÿ

ij
aijxiyjÎLq .



Case of Lq spaces.

The previous inequality can be reversed if (F , Î·Î) satisfies

For any F-valued matrix A æ EÎ
ÿ

i ”=j
aijgijÎ Æ C(F )Î

ÿ

ij
aij(gigj ≠ ”ij)Î

The above hold in Lq space, type 2 spaces. For Banach Lattices it is
equivalent to finite cotype (in general finite cotype is not enough).

Theorem (R. Adamczak, R. Lata≥a, R. Meller)

In Lq spaces the following is true (no E on the RHS! deterministic bound)

p

Û
Î
ÿ

ij
aij(gigj ≠ ”ij)Îp

Lq ≥q Î
Ûÿ

ij
a2

ijÎLq + Ô
p sup

xœBn2
2

Î
ÿ

ij
aijxijÎLq

+ Ô
p sup

xœBn
2

Î

ı̂ııÙ
ÿ

i

Q

a
ÿ

j
aijxj

R

b
2

ÎLq + p sup
x ,yœBn

2

Î
ÿ

ij
aijxiyjÎLq .



Extreme points of a subset of log-concave probability

sequences

Heshan Aravinda (University of Florida)

( based on joint work with Arnaud Marsiglietti)

Workshop in Convexity and High-Dimensional Probability - Georgia Tech
May 23-27, 2022

Heshan Aravinda (UF) Extreme points of log-concave probabilities May 27, 2022 1 / 14



1 Introduction

2 A discrete localization

3 Applications

4 A generalized localization in Z

Heshan Aravinda (UF) Extreme points of log-concave probabilities May 27, 2022 2 / 14



Log-concave Distributions

Definition

A random variable X on Z is said to be log-concave if its probability
mass function p satisfies,

p2(n) � p(n+ 1) p(n� 1) for all n 2 Z ,

and X has a contiguous support.

Examples:

Bernoulli.

Geometric distribution.

Poisson.

Binomial.

Discrete uniform distribution.
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Log-concave probability sequences

Log-concave measures and their geometry are well-understood in the

continuous setting!!

One would like to investigate the class of discrete log-concave
probabilities on Z.

Ex:

Properties of log-concave sequences.

Geometric and functional inequalities.

Concentration bounds.
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A Discrete Localization (Marsiglietti & Melbourne - 2020)

Motivation: The work done by Fradelizi & Guédon (2004) in the

continuous setting.

Goal: Identifying the extremal distribution of the class of log-concave

probabilities on Z satisfying a mean constraint.

Notation: Let M,N 2 Z.

[M,N ] = {M,M + 1,M + 2, ..., N}.
P([M,N ]) : The set of all probabilities supported on [M,N ].

� : A measure with contiguous support on Z and mass function q.

h: An arbitrary real-valued function defined on [M,N ].

Consider the following set.

P�
h ([M,N ]) = {PX 2 P([M,N ]) : X log-concave w.r.t � , E[h(X)] � 0} .
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A Discrete Localization ctd...

Theorem (Marsiglietti & Melbourne - 2020)

If PX 2 Conv(P�
h ([M,N ])) is an extreme point, then its proba. mass

function f w.r.t � satisfies,

f(n) = Cpnq(n) 1[k,l] , (?)

where C, p > 0 and k, l 2 [M,N ].

Corollary

Let � : P�
h ([M,N ]) ! R be convex. Then,

sup
PX2P�

h ([M,N ])
�(PX)  sup

PX2A�
h([M,N ])

�(PX) ,

where A�
h([M,N ]) = P�

h ([M,N ]) \ {PX : X with PMF as in (?)}
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Applications

1 Combinatorial results.

Convolution of log-concave and ultra log-concave sequences.

A walkup-type theorem.

{ak} is LC =) {ck} defined by ck =
X

n�k

✓
n

k

◆
an is LC.

2 A discrete version of Prékopa-Leindler inequality.

3 Small & large deviation inequalities for log-concave probability

sequences.

4 A concentration for ultra log-concave distributions (HA,
Marsiglietti & Melbourne - 2021).
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Concentration for ULC random variables

Theorem (HA, Marsiglietti & Melbourne - 2021)

Let X be ultra log-concave. Then,

P(|X � E[X]| � t)  2e
�t2

2(t+E[X]) for all t � 0.

Var(X)  E[X].

Consequence:

Let K ✓ Rn
be a convex body. Denote by ZK , the intrinsic volume

random variable associated with K. Then,

P(|ZK � E[ZK ]| � t
p
n)  2e�

1
2 t

2
for all 0  t 

p
n .

V ar[Zk]  n .

This improves a result of Lotz, McCoy, Nourdin, Peccati & Tropp -
2019.
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Extending localization to multiple constraints

Goal: Generalizing the localization of Marsiglietti & Melbourne to

multiple constraints.

Set up:

Let h1, h2, ..., hp : [M,N ] ! R be arbitrary and h = (h1, h2, ..., hp).
Consider,

P�
h ([M,N ]) = {PX 2 P([M,N ]) : X log-concave � , E[h(X)] � 0}

Question:

If PX 2 Conv(P�
h ([M,N ])) is an extreme point, then the PMF of

PX?
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A generalized localization (ongoing work)

Theorem (Marsiglietti & HA - 2022+, Nayar & Slobodianiuk - 2022)

Let PX 2 conv(P�
h ([[M,N ]])) be an extreme point. Denote by V , the

convex function such that e�V is the PMF of PX with respect to the
counting measure on Z. Let k = #{i 2 {1, 2, ..., p} : E[hi(X)] = 0} be
the number of saturated constraints. Then, there exists k a�ne functions
�1,�2, ...,�k on supp(V ) such that V = max

1ik
�i. (*)

Corollary

Let � : Ph([[M,N ]]) ! R be convex. Then,

sup
PX2Ph([[M,N ]])

�(PX)  sup
PX2Fh([[M,N ]])

�(PX) ,

where Fh([[M,N ]]) = Ph([[M,N ]]) \ {PX : X with PMF as in (*) }.
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Proof techniques

The main idea is to use the notion of degree of freedom of a log-concave

function introduced by Fradelizi & Guédon (2004).

Definition (Fradelizi & Guédon - 2004)

Let V : Z ! R [ {+1} be convex and D = dom(V ). Define the degree
of freedom of e�V as the largest k such that,

there exist ↵ > 0 and linear independent bounded functions W1,W2, ...Wk

defined on D such that for all ✏1, ✏2, ..., ✏k 2 [�↵,↵] , the function
e�V (1 +

Pk
i=1 ✏iWi) is discrete log-concave.

Geometrically, this is the largest k such that there is a
k�dimensional cube around e�V in the set of discrete log-concave
functions.
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Let V : Z ! R [ {+1} be convex and D = dom(V ). Define the degree
of freedom of e�V as the largest k such that,

there exist ↵ > 0 and linear independent bounded functions W1,W2, ...Wk

defined on D such that for all ✏1, ✏2, ..., ✏k 2 [�↵,↵] , the function
e�V (1 +

Pk
i=1 ✏iWi) is discrete log-concave.

Geometrically, this is the largest k such that there is a
k�dimensional cube around e�V in the set of discrete log-concave
functions.

Heshan Aravinda (UF) Extreme points of log-concave probabilities May 27, 2022 11 / 14



Proof techniques

The main idea is to use the notion of degree of freedom of a log-concave

function introduced by Fradelizi & Guédon (2004).

Definition (Fradelizi & Guédon - 2004)
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Extension of a convex function in Z

Denote by V̄ , the convex extension of V obtained by extending V linearly
on each [[k, k + 1]] ⇢ [[a, b]].

V̄ is continuous on [a, b].

V̄ is convex on [a, b].

=) e�V̄ is log-concave on [a, b].
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A key lemma

Lemma

Let V : [[a, b]] ! R be convex. Then,

Deg. of freedom of e�V = Deg. of freedom of e�V̄

Idea of the proof of theorem (*):

Using the Lemma and techniques developed by Fradelizi & Guédon
(2004), we can extend the results from V̄ to V .
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Thank you! Any questions?
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Intersections of `np balls - a phase transition result

For p 2 (0,1], define `np ball Bn
p := {x 2 Rn :

Pn
i=1 |xi |

p  n}.

Theorem (Schechtman and Schmuckenschläger, ’91)

For p 2 (0,1] and q 2 (0,1], there exists cpq > 0 such that

��Bn
p \ tB

n
q

��
��Bn

p

�� !
(
0, if t < cpq,

1, if t > cpq,

Probability theory comes into play –
��Bn

p \ tB
n
q

��
��Bn

p

�� = P
⇣
X

(n,p) 2 tB
n
q

⌘

where X
(n,p) ⇠ uniformly on B

n
p .
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A useful representation by Schechtman and Zinn ’90

• U ⇠ Uniform[0, 1]

• ⇠(n,p) = (⇠1, . . . , ⇠n) where {⇠i} are i.i.d. and has density

fp(x) :=
1

2p1/p�(1 + 1/p)
e
�|x|p/p

• Let X (n,p) ⇠ uniformly on B
n
p := {x 2 Rn : kxkpp  n}. Then

X
(n,p) (d)

= n
1/p

U
1/n ⇠(n,p)��⇠(n,p)

��
p

.

��Bn
p \ tB

n
q

��
��Bn

p

�� = P
⇣
X

(n,p) 2 tB
n
q

⌘
= P

 
U

q/n
1
n

Pn
i=1 |⇠i |

q

�
1
n

Pn
i=1 |⇠i |

p�q/p  t
q

!

SLLN implies that there exists a constant Apq > 0 such that

U
q/n

1
n

Pn
i=1 |⇠i |

q

�
1
n

Pn
i=1 |⇠i |

p�q/p ! Apq.

The probability converges to 0 or 1 when t < A
1/q
pq or t > A

1/q
pq ,

respectively.

Question: What if t = A
1/q
pq ?
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After a decade...

Theorem (Schmuckenschläger, ’01)

For p 2 (0,1], q 2 (0,1] and p 6= q, if t = cpq then

��Bn
p \ tB

n
q

��
��Bn

p

�� ! 1

2

CLT instead of SLLN to understand P
✓
U

q/n
1
n

Pn
i=1|⇠i |

q

( 1
n

Pn
i=1|⇠i |

p)q/p
 t

q

◆
.

Can we extend the results to more general convex bodies?
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Beyond `np balls – Orlicz balls

Definition

We say V is an Orlicz function if V : R ! R+ is convex and satisfies

V (0) = 0 and V (x) = V (�x) for x 2 R.

Define the associated symmetric Orlicz ball by

B
n
V (R1) :=

(
x 2 Rn :

nX

i=1

V (xi )  nR1

)
.

Remark: When V (x) = |x |p, Bn
V is indeed the `np ball of radius n1/p.

However, Orlicz ball does not admit a nice probabilistic representation

like `np balls.

• LDP for norms of random vectors uniformly distributed on Orlicz

balls (Kim, L- and Ramana ’20)

• Sharp volume estimates (Kabluchko and Prochno ’20, L- and Ramanan ’20)

|Bn
V (R1)| =

1

�R1⌧R1

p
2⇡n

e
�n infx J (R1,x)(1 + o(1))
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Almost two decades after Schmuckenschäger...

Theorem (Kabluchko and Prochno ’20)

Let V1 and V2 be Orlicz functions. Fix R1 > 0. There exists an explicit

constant cR1 := cV1,V2,R1 > 0 such that as n ! 1
��Bn

V1
(R1) \ B

n
V2
(R2)

��
��Bn

V1
(R1)

�� !
(
0, if cR1 > R2

1, if cR1 < R2.

The proof relies on the SLLN and a large deviation tilting measure.

Critical case when R2 = cR1?
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Less than a year!

Theorem (L- and Ramanan ’21)

Under suitable conditions on Orlicz functions V1 and V2. At the critical

value when R2 = cR1 ,

��Bn
V1
(R1) \ B

n
V2
(R2)

��
��Bn

V1
(R1)

�� ! 1

2
.

Remark: A su�cient condition: V 0
1(x)/V

0
2(x) is strictly increasing in R+

and tends to infinity as x ! 1.

Theorem (L- and Ramanan ’21)

At the critical case, we have

��Bn
V1
(R1) \ B

n
V2
(R2)

�� = CR1,R2

⌧R1

p
2⇡n

e
�nJ (R1,R2)(1 + o(1))

The sharp large deviation estimate relies on quantitative CLTs under the

large deviation tilting measures.
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Summary

• While SLLN and CLT type results have been used for several

decades, only very recently have large deviations methods been

introduced in asymptotic convex geometry

• Our work is amongst the first to use sharp large deviations estimates

in asymptotic convex geometry – which requires a combination of

tools from probability theory and Fourier analysis

• Sharp large deviation estimates are more broadly useful in

high-dimensional probability/statistics

7
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Setting Motivation Main result Related Results

Setting

Suppose X(i) = (X(i)
1 , · · · , X(i)

ni ), 1  i  l are random vectors in Rni . Define the
simple random tensor

X := X(1) ⌦ · · ·⌦X(l) = (X(1)
i1

· · ·X(l)
il

)i1···il .

Let F be an m-dimensional subspace in Rn1⇥···⇥nl and let f1, · · · , fm be an
orthonormal basis for F . Denote by PFX(1) ⌦ · · ·⌦X(l) the orthogonal
projection of X(1) ⌦ · · ·⌦X(l) onto F . Then by definition we have

���PFX
(1) ⌦ · · ·⌦X(l)

���
2

2
=

mX

k=1

���
D
X(1) ⌦ · · ·⌦X(l), fk

E���
2
.

X. Hu Small Ball Probabilities for Simple Random Tensors2 / 9



Setting Motivation Main result Related Results

Motivation

Definition
Every tensor order-l X can be expressed as a sum of order l simple tensors,

X =
X

u2U
X(u)(1) ⌦ · · ·⌦X(u)(l).

The rank of a tensor T is the minimum number of |U|.

The initial motivation is to retrieve X(u)(j)’s from a given tensor of fixed rank.

Bhaskara, Charikar, Moitra, Vijayaraghavan designed the smoothed analysis model
that can recover X(u)(j)’s with high probability if all the simple tensors
X(u)(1) ⌦ · · ·⌦X(u)(l) are robustly linearly independent. It su�ces to prove that

for any subspace F ⇢ Rnl

of given dimension m, PFX(u)(1) ⌦ · · ·⌦X(u)(l) has
small ball property.

X. Hu Small Ball Probabilities for Simple Random Tensors3 / 9



Setting Motivation Main result Related Results

Main result

Theorem

Let X(j) 2 Rnj , 1  j  l be independent random vectors with independent

coordinates whose densities have uniform norms bounded by 1. Suppose F is a

subspace in Rn1⇥···⇥nl with dimension m and suppose zj 2 Rnj , 1  j  l are
arbitrary vectors, then for 0 < ✏ < 1

P
⇣���PF ⌦l

j=1

⇣
X(j) � zj

⌘���
2
 ✏

p
m
⌘
 m✏

✓
C log

1

✏

◆l�1

.
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Examples
In general, this upper bound cannot be improved in terms of ✏. In fact, let
X(j) 2 Rn be independent uniform distributions on [�

p
3,
p
3]n, 1  j  l.

Choose unit vector f 2 Rnl

such that

fi1···il =

(
1 if i1 = · · · = il

0 otherwise
.

Then for 0 < ✏ < 1,

P[|hX(1) ⌦ · · ·⌦X(l), fi|  ✏] =
✏p
3

l�1X

j=0

⇣
log

p
3
✏

⌘j

j!
� C

(l � 1)!
✏

✓
log

1

✏

◆l�1

.

In fact, we can construct subspace F of dimension m, 1  m  n, such that

P
⇣���PFX

(1) ⌦ · · ·⌦X(l)
���
2
 ✏

p
m
⌘
� C

p
m

(l � 2)!
✏

✓
log

1

✏

◆l�2

.

The behavior of
��PFX(1) ⌦ · · ·⌦X(l)

��
2
depends on the choice of the subspace

F .
X. Hu Small Ball Probabilities for Simple Random Tensors5 / 9



Setting Motivation Main result Related Results

Main Result

Definition
A random vector in Rn is log-concave if its density f is log concave, i.e. for
x, y 2 Rn and ✓ 2 (0, 1), we have

f(✓x+ (1� ✓)y) � f(x)✓f(y)1�✓.

Definition
A random vector in X 2 Rn is isotropic if

EXXT = Id.

X. Hu Small Ball Probabilities for Simple Random Tensors6 / 9
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Main result

Theorem

Let X(j) 2 Rnj , 1  j  l be independent isotropic log-concave random vectors.

Suppose F is a subspace in Rn1⇥···⇥nl with dimension m and suppose f1, · · · , fm

is an orthonormal basis of F . Then for 0 < ✏ < 1

P
⇣���hX(1) ⌦ · · ·⌦X(l), fki

���  ✏
⌘
 ✏

✓
C log

1

✏

◆l�1

and thus

P
⇣���PFX

(1) ⌦ · · ·⌦X(l)
���
2
 ✏

p
m
⌘
 m✏

✓
C log

1

✏

◆l�1

.

Remark

E
���PFX

(1) ⌦ · · ·⌦X(l)
���
2

2
= m

X. Hu Small Ball Probabilities for Simple Random Tensors7 / 9
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Related Result

Carbery-Wright inequality can lead to a small ball property of simple tensors
where the component vectors are log-concave.

Vershynin gives concentration inequalities of orthogonal projection of simple
tensors where the component vectors are subgaussian.

Bhaskara, Charikar, Moitra, Vijayaraghavan give small ball property of orthogonal
projection of simple tensors where the component vectors are Gaussian.

Anari, Daskalakis, Maass, Papadimitriou, Saberi, Vempala give small ball property
of orthogonal projection of simple tensors where the component vectors are drawn
from (�, p)-nondeterministic distribution.

Glazer and Mikulincer give small ball property of any polynomial function of
log-concave product measure.

X. Hu Small Ball Probabilities for Simple Random Tensors8 / 9



Setting Motivation Main result Related Results

Thank You!
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